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Infinite hidden Markov models can dissect 
the complexities of learning
 

Sebastian A. Bruijns    1,2  , International Brain Laboratory*, Kcénia Bougrova3, 
Inês C. Laranjeira3, Petrina Y. P. Lau4,5, Guido T. Meijer    3, Nathaniel J. Miska6, 
Jean-Paul Noel    7, Alejandro Pan-Vazquez8, Noam Roth9, Karolina Z. Socha4,10, 
Anne E. Urai    11 & Peter Dayan    1,2

Learning the contingencies of a task is difficult. Individuals learn in an 
idiosyncratic manner, revising their approach multiple times as they 
explore and adapt. Quantitative characterization of these learning curves 
requires a model that can capture both new behaviors and slow changes 
in existing ones. Here we suggest a dynamic infinite hidden semi-Markov 
model, whose latent states are associated with specific components of 
behavior. This model can describe new behaviors by introducing new states 
and capture more modest adaptations through dynamics in existing states. 
We tested the model by fitting it to behavioral data of >100 mice learning 
a contrast-detection task. Although animals showed large interindividual 
differences while learning this task, most mice progressed through three 
stages of task understanding, new behavior often arose at session onset, and 
early response biases did not predict later ones. We thus provide a new tool 
for comprehensively capturing behavior during learning.

Engaging with a new environment or task raises a multitude of prob-
lems—which sensory signals are pertinent to the task, and which are 
just noise? What actions are relevant to performance? How should 
observations inform actions? Particularly if the experimenter suddenly 
changes an aspect of the task (to manipulate or shape behavior), but 
also in stable environments, animals solve these problems through a 
mixture of apparent leaps in performance and slow accumulation of 
improvements1–9. This process of learning is marked by substantial 
variability across individuals, who progress at different speeds and 
over distinct intermediate stages10. Interindividual differences during 
learning are a known phenomenon11, although relatively little studied 
(although, for instance, see refs. 12,13). Even if the resulting behavior 
is highly similar across animals, variability during learning can make 
comparisons across groups in this period challenging11. This is because 
behavior during learning is a complex mixture of differently compe-
tent decision-making modes, prone to sudden shifts in performance 

(for better or worse), all of which occur on widely different timescales 
across individuals. More generally, the idiosyncrasies of the learning 
path may leave a trace in performance even after learning has finished 
and behavior has stabilized14.

Despite the richness of these dynamics, much of the work on the 
modeling of learning has ignored acquisition in its full breadth and 
generally considered only how animals adapt to ongoing changes in 
facets of tasks, such as reversing reward schedules. By this point in 
the task, the animals have learned the basics of the problem, and those 
that failed to learn it have been excluded. One of the reasons for this 
neglect of initial learning is that each animal provides only one sample 
of a learning curve, whereas for fully acquired behavior, every trial 
can typically be viewed as another sample from the learned behav-
ior. This means that learning curve data are generally sparse, further 
aggravating the problem of large variability. Here we make use of the 
large-scale approach to data collection embodied by the International 
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studying a representative fit to one animal in detail; and finally, we 
conclude by summarizing the fits of our model to 134 subjects, high-
lighting similarities and differences across the population.

Results
We analyzed the choices of 134 mice learning a perceptual 
decision-making task, each of which underwent, on average, 24.4 ses-
sions (total, >3,200) and ~14,800 trials (total, >1.9 million)11. In this 
task, head-fixed mice were shown a sinusoidal grating of a controlled 
contrast, which had equal probability of being on either the right or 
left side of a screen (Fig. 1a). They then had to center it (within 60 s) by 
turning a steering wheel in the appropriate direction. Successful tri-
als led to water reward, whereas unsuccessful trials resulted in a noise 
burst and a 1-s timeout. Trials were self-paced, with mice signaling their 
readiness by keeping the wheel still for a period.

Mice learned the task according to a shaping protocol that 
gradually introduced more difficult stimuli and actively removed 
action biases (Fig. 1b). Accordingly, shaping began with strong con-
trasts—100% and 50%. At the initial stage, there was no perceptual 
difficulty; the animals only had to learn the basic contingencies of the 
task. Once they had reached sufficient performance on these contrasts 
(≥80% correct for each contrast type on the last 50 trials), 25% contrasts 
were introduced. After performance was also good on this extended 
set (same criterion), the remaining contrasts were introduced in a stag-
gered manner—12.5%, 6.125% and 0%, whereas the 50% contrast was 
dropped. For the 0% contrast, one side was randomly rewarded (50% 
probability per trial). A debiasing protocol increased the probability 
of repeating the stimulus that was just shown when the mouse made a 
mistake on an easy (100% or 50%) contrast. This deterred perseverative 
or biased strategies, but could lead to reward rates <50%.

To characterize the course of learning across trials, we devel-
oped a flexible model that segments an animal’s behavior into dis-
crete states that last for variable numbers of trials within a session 
and can recur across multiple sessions. As this is a descriptive model, 
we equate a behavior with its corresponding state and, generally, will 
not distinguish between the two in the text. We first describe how a 
single state generates choice probabilities on a trial for which it was 
responsible (Fig. 1c, within circles) and then how we treat multiple 
states (Fig. 1c, arrows).

As in previous work21,28, we formalize the response probabilities 
for the binary choices of mice through logistic regression (omitting 
the rare trials in which the animal timed out by not responding within 
60 s). Trial t of session n is described by features fn,t comprising (1) the 
stimulus, that is, the contrast on the left and right of the screen, sepa-
rated to allow for different sensitivities to leftwards and rightwards 
stimuli, as mice were frequently differently sensitive to the screen 
sides in this task; (2) task history, in the shape of an exponentially 
decaying average over the last actions—interestingly, mice only used 
a perseverative bias, but did not use reward information to implement 
a win-stay lose-shift strategy (as was also observed in refs. 29,30 and, in 
the same task at a later stage, in ref. 31); and (3) a bias term to allow for 
side preferences regardless of other features. Labeling the state that 
is active on this trial as xn,t, the response yn,t ∈ {L, R} (for left and right) 
is modeled by the distribution

P( yn,t = R) = sig ( fn,t ×wxn,t ,n) , (1)

where the weights of the states wx,n, ∀x are also indexed by session n, 
as they can drift across sessions. Here sig(⋅) is the standard logistic 
sigmoid function.

The model generalizes a standard HMM in the following three ways 
that make it especially suited to describe the phases of learning: (1) it is 
nonparametric about the number of states; that is, the number of states 
describing the behavior of each individual is separately determined, 
accommodating interindividual differences. This characteristic also 

Brain Laboratory (IBL; ref. 11) to build a rigorous descriptive model of 
the multisession learning curves of more than 100 mice solving a per-
ceptual decision-making task. While we used a large and varied dataset 
for development and testing, the final method does not require a large 
number of individuals and should therefore be broadly applicable to 
multisession learning data.

Previous work on task acquisition has sought to find the point 
in time at which an animal can be said to have ‘learned’ a task, often 
defined as reliably above chance performance15. Methods for solving 
this kind of change-point detection (for example, refs. 16,17) typically 
make a binary distinction between uninformed and learned behavior, 
rather than describing used strategies in detail, or finding possible 
intermediate stages. Other previous work addresses strategy inference 
more specifically and does consider learning18. This involves inference 
on a trial-by-trial basis over a set of simple, preselected strategies, 
decaying evidence exponentially over time to track the arrival and 
departure of various strategies.

We sought to accommodate the complexities of learning curves 
using a descriptive modeling framework that satisfies a number of 
desiderata. First, at any point along the curve, the model should cap-
ture an individual’s current repertoire of behaviors, characterizing 
its performance. Second, it needs to track this repertoire as behavior 
evolves, introducing new components (which we identify as behavioral 
‘states’) when change is abrupt (for example, refs. 9,19), detecting the 
reuse of a past state if it re-emerges and allowing for slow, gradual shifts 
in a component, with the steady development of skilled performance 
(for example, ref. 20). Third, the collection of components should be 
potentially unbounded because we cannot know ahead of time how 
many distinct behaviors any individual might exhibit.

We therefore built a model that combines and extends two recent 
approaches. One is from ref. 21 (additional related work in ref. 22), 
which describes decision-making performance after learning with a 
hidden Markov model (HMM). Each latent state of the model captures 
a single component of behavior as a map from task-relevant variables 
to a distribution over choices, via logistic regression. In the case of 
perceptual decision-making, this generalizes a psychometric function 
(PMF) to include other factors (for example, perseveration). The overall 
description of behavior is in terms of a mixture of different policies that 
can switch rapidly. However, the HMM approach assumes stationarity 
of behavior across time and is constrained to a fixed level of complex-
ity by specifying the number of states a priori. This weakens its ability 
to characterize the dynamic and idiosyncratic progression through 
training. To address these issues, we adopted the HMM framework to 
capture abrupt changes, except that (1) the states come from a Bayesian 
nonparametric structure, allowing for a degree of behavioral complex-
ity that is only constrained by an inbuilt Occam’s razor and enabling the 
introduction of new states for suddenly appearing new behaviors23–27; 
and (2) we used a semi-Markov model so that latent states can persist 
for nongeometrically distributed numbers of trials.

The second approach is that of ref. 28, which effectively considers 
only a single state but allows the logistic regression weights imple-
mented by that state to be dynamic, tracking changes in behavior 
through appropriate updates to the weights. We used this so that the 
characteristics of our hidden states can evolve slowly, capturing the 
other prevalent form of acquisition of skilled performance.

Showcasing our model on behavioral data from the IBL task, 
described in ref. 11, we reveal that learning progresses over a small 
number of distinct stages that are present in almost all animals. These 
stages apparently correspond to the sequential acquisition of elements 
of the task—in our case, particularly associated with taking into account 
different aspects of the sensory environment inherent to the task. 
Although this pattern was shared across the mice, the duration and 
diversity of the stages differed greatly between individuals.

We first describe the IBL task and our way of characterizing the 
behavior mice exhibit; then we discuss the details of the model by 
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allows the model to capture sudden changes in behavior, as it is able to 
introduce a new state when behavior changes notably (we call this the 
‘fast process’; ‘Infinite hidden semi-Markov model’ section). (2) States 
are dynamic over sessions, allowing the behavior implied by a state 
to change gradually across session boundaries28 (the ‘slow process’; 
‘Dynamic logistic regression prior and sampling’ section). (3) While 
for HMMs the numbers of trials for which a single state remains active 
always follow a geometric distribution, we adopt a semi-Markovian 
approach, allowing for more general distributions. Taking all these 
additions together, we end up with a dynamic infinite input–output 
hidden semi-Markov model (diHMM).

The transition matrix over a flexible number of states and the 
evolution of the psychometric weights are defined by priors, and the 
Bernoulli observation model provides a likelihood for each trial, allow-
ing for approximate Bayesian inference (Methods). We performed 
this using a Markov chain Monte Carlo (MCMC) algorithm, namely 
Gibbs sampling. For a single animal, the entire response and feature 
data across all training sessions were fitted together. Individuals were 
fitted separately, meaning a large number of subjects is not necessary 
for the application of our model. Integrating across a number of Gibbs 
samples from multiple Markov chains led to a set of behavioral states 
defined by their session-varying weights wx,n and duration distribu-
tions, as well as a hard assignment of every trial onto one of these states. 
While all other relevant random variables are specified hierarchically 
or ruled by vague priors, the variance for slow changes within states is 
set, as inference over this variable proved problematic; we revisit this 
parameter in the discussion.

Single animal fit
We visually summarize the model fit for mouse KS014 at the resolu-
tion of entire sessions in Fig. 2. This animal exemplified many of the 
interesting properties found across the population. The inferred model 
contains eight states, but these states were generally active for only a 
small number of sessions before being replaced by others. We number 
them in order of appearance. In a typical session, the majority of trials 
were explained by a single one; at most, a few were active. Later states 

generally represented more adept behavior, although not exclusively. 
The mouse started with state 1, which exhibited a flat PMF (far right of 
the plot), indicating that the animal did not take into account the side 
of the sensory input. This state was promptly replaced by state 2 in the 
next session, which also had a flat PMF, although shifted. This change 
in bias was strong enough to warrant a new state (rather than the slow 
process of changing the existing state), but there was no evidence that 
the animal advanced in its understanding of the underlying task.

State 2 lasted four sessions, indicating that behavior remained 
relatively consistent during this time. It was then predominantly 
replaced by state 3, which started with a mostly flat and strongly biased 
PMF (leading to a lower reward rate due to the bias correction) but 
improved considerably over the next few sessions, as can be seen in 
the evolving PMF (with darker colors showing later sessions). It seem-
ingly considered only sensory information from the left side when 
making its choice, becoming increasingly random when that side was 
uninformative. The random behavior was doubly beneficial, as the 
animal would sometimes have been correct and also got foiled less by 
the bias-correction protocol. State 3 was accompanied by state 4, which 
described the behavior at the ends of the next few sessions (and later 
also at the ends of sessions 14 and 15). Puzzlingly, this state had a good 
PMF on both sides and a higher reward rate than state 3, but although 
this better state was available, the animal seemed incapable or unwill-
ing to use it for the majority of a session.

The last major step in learning appeared abruptly as state 6, with 
good performance on both sides (albeit differently from state 4). Along 
with state 6, we observed the introduction of state 7, which captured a 
strong but transient decline in behavioral quality. Finally, state 8 repre-
sented another notable change in behavior, as performance on 100% 
contrasts increased abruptly enough to warrant a new state, allowing 
the mouse to conclude this part of training.

Various aspects of our model cannot be reproduced by existing 
treatments. The Psytrack model of the study discussed in ref. 28 can fit 
incremental changes in behavioral characteristics; however, because 
it lacks a concept of state, it does not natively support the identifica-
tion of recurring behavioral patterns. We find that many states occur, 
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Fig. 1 | Behavior and modeling overview. a, Sensory decision-making paradigm. 
Mice indicated whether a contrast grating was on the left or right of a screen 
using a wheel. b, Representative behavior of mouse KS014 (also used later). This 
shows improvements in behavior and the concomitant extension of the contrast 
set. c, Visual representation of the main components of the model. Each state, 
represented by a circle, has an associated observation distribution, shown 
inside its circle. This is implemented via logistic regression, which considers 
the contrast on the current trial and a weighted history of previous choices (the 
latter is not shown here). The weights underlying these regressions can change 

from session to session, resulting in shifts of the PMFs they represent; we depict 
this evolution here with varying shades of color. States are connected to other 
existing states via transition probabilities P. In addition to that, states also have 
the option to transition into a new state, to describe a type of behavior that is not 
well captured by any of the existing states. Finally, staying in the same state for 
more than one trial is not modeled via a self-transition probability; instead, each 
state has its own duration distribution. Panel a reproduced from ref. 11 under a 
Creative Commons licence CC BY 4.0.
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then disappear, before reoccurring in a later session, such as states 3 
and 6 in the animal shown in Fig. 2. This re-emergence of previously 
used strategies is an important feature of learning. Similarly, the static 
generalized linear model (GLM)–HMM described in ref. 21, which is 
aimed at asymptotic behavior, does not determine the number of states 
automatically. This implies that model selection is required for each 
individual animal, which the relatively small number of data points can 
make challenging. Furthermore, in the GLM–HMM, states cannot adapt 
their PMFs, which is a second important feature of learning. Without 
this, the GLM–HMM would tend to split states when behavior changes 
gradually but sufficiently as to elude a single set of weights.

Our model also provides a fine-grained view of the use of behav-
ioral states within a session. Although the diHMM provides a full pos-
terior over the states for each trial, this is not directly useful due to 
the technicalities of the sampling procedure. We therefore processed 
the sample chains to estimate how much a trial belonged to a state 
(Methods). We show an excerpt of this, for session 12 of mouse KS014, 
in Fig. 3. This shows two clear transitions between states. The reasons 
for the animal to have made such a transition are probably multifaceted 
and may have been both internal (for example, insights or motivational 
fluctuations32) and external (for example, a number of low contrast, 
perchance unrewarded trials demotivating the animal). We do not 
model these reasons and, instead, only describe observed changes.

The within-session fit shows that the model can detect temporary 
yet strong deviations in behavior. State 7 only explained a couple of 
dozen trials in two sessions, but represented extremely biased behavior 
(comparable, but flipped relative to the earlier state 2, albeit lasting 
for many fewer trials). We speculate that state 7 arose from a form of 
inattention because the animal had previously shown itself capable of 
performing appropriately. This change in behavior is directly evident 
in the response patterns of the animal.

We can also capture subtler differences in behavior. The model 
used different states to explain behavior before and after state 7, 
although performance appeared equally good. However, the model 
identified different error rates on easy contrasts for the two states, 
and this can be found in the choices—state 6 was associated with more 

incorrect responses to contrasts on the left side, whereas in state 4, 
performance on leftwards contrasts was good, but there were frequent 
lapses on rightwards contrasts (comparing two logistic regression 
models—one using contrast and state 4 (assigned to n = 391 trials) or 
6 information (assigned to n = 331 trials) to predict responses, and the 
other a nested model that only uses contrast (for the total of n = 722 
trials)—the state-split model is significantly better, as determined 
by a likelihood-ratio test with P < 0.0006 (D = 14.96, df = 2), with an 
effect size, as measured by the McFadden pseudo-R2, of 0.025; Fig. 3, 
responses marked by arrows).

Fits across the population
The threefold progression we observed throughout learning in Fig. 2—
from flat PMFs, to ‘one-sided’ behavior, to generally good performance—is 
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typical for the population of mice we fitted. To define this more objec-
tively, we clustered the states into these three types based on their reward 
rate on easy trials (see ‘Psychometric type classification’ section for 
details). The boundary between types 1 and 2 is at a 60% reward rate, and 
the boundary between types 2 and 3 is at a 78% reward rate. We show an 
overview and examples of the different types in Fig. 4.

In addition to the state types, we define the stage at which an 
animal is on any given session as the highest type it has so far used for 
the majority of trials of any session up to this point. For instance, if up 

to session n − 1, an animal only used type 1 states or type 2 states for 
fewer than 50% of trials, then it would be in stage 1 for those sessions. 
If, on session n, it then used type 2 states for more than 50% of trials, 
it would switch to stage 2 on that session. Because the state types 
delineate different aspects of task understanding, the stages allow us 
to determine how many sessions the animals stayed at a certain level 
of understanding. While the progression through state types was not 
monotonic (for example, session 11 of Fig. 2), the stage classification 
is, by definition, monotonically increasing.
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Stage 1 consisted of states with flat PMFs of various biases, gener-
ally ignoring the contrast location. Stage 2 almost always involved 
asymmetric states, responding well to one side of the screen, but close 
to uniform guessing for the other (PMFs assigned to Fig. 4b,c account 
for 86% of those in stage 2; see ‘Psychometric type classification’ section 
for details). Only rarely were intermediate PMFs nearly equally good 
on both sides (the 14% in Fig. 4d). These rare cases did behave like the 
other type 2 states in terms of their time of appearance during training 
as well, rather than type 3. Finally, in stage 3, the animals started appar-
ently paying attention to both sides. Generally, it took some further 
refinement of initial type 3 states, through the reduction of errors on 
easy trials on either side, to master this stage of training and progress 
to the next phase of shaping.

The three stages segment the learning process. We can ana-
lyze the proportion of training time the animals spent in the differ-
ent stages by showing these proportions on a simplex (Fig. 5 and 
Supplementary Fig. 1, linear representation). The large majority of 
animals spent some time in each of the stages (that is, only a few mice 
are assigned to the edges of the simplex). Most animals spent the long-
est time in stage 3—going from moderately competent performance 
to passing the stringent training criteria. No fundamental change in 
understanding was necessary for this, unlike the changes from stage 1 
to 2 or 2 to 3 (where the animal had presumably to learn to pay attention 
to the Gabor patch on one or both sides of the screen). However, reach-
ing the required accuracy seemed difficult, even once the principles of 
the task were understood (possibly due to the small increase in reward 
rate afforded by the extra accuracy). Some of the longest trajectories 
(the largest circles) were associated with especially many sessions in 
stage 3, but overall the average fractional occupation was remarkably 
consistent across training lengths (the mean relative occupancy for 
stage 1, 2 and 3, respectively, were (0.24, 0.17, 0.59) and (0.21, 0.14, 0.65) 
for the shorter and longer halves of a median split on the total number 
of training sessions). Stage 2 consistently lasted for the fewest sessions, 
implying that the mice managed to pay attention to both sides not too 
long after starting to pay attention to one side.

Connected to this is the question of how slow and fast changes 
characterize behavior. We analyzed gradual changes within a state 
by comparing its PMF weights on its first and last appearances. We 
analyzed new state introductions by comparing their PMF weights to 
those of the closest previous state, as determined by the Wasserstein 
metric on their resulting PMFs (ignoring the perseverative weight). To 
highlight the changes, we focused on states that brought the animal 
into a new stage. These weight evolutions, split by type, are shown in 
Fig. 6. As the main driver of performance, contrast sensitivities reliably 
increased both over the lifetime of a state and when new states were 
introduced. Surprisingly, however, both the bias and perseverative 
weights were stable within a state. This was markedly different for 
the fast process—the changes through this were significantly larger 
(Supplementary Figs. 12 and 13; one-sided Mann–Whitney U test on 
absolute weight changes, two biases, two fast change points, three slow 
change processes; the fast process had significantly larger changes 
for all 12 comparisons at a 0.05 significance level, after applying the 
Benjamini–Hochberg procedure to control the false discovery rate, 
with effect sizes ranging from 0.43 to 0.94, quantified as standardized 
mean difference, using the fast change s.d.). We also see that the per-
severation weight had a small but consistent role throughout learning 
(although its relative influence waned as the sensitivities grew).

The introduction of new states signifies notable changes in behav-
ior, so by studying the patterns of their occurrences, we gain insight into 
when behavior was volatile or when substantial progress was made. The 
histograms in Fig. 7 show when new states first appeared across normal-
ized training and session times. In later sessions, gradually fewer states 
were introduced, indicating that behavior saw fewer drastic changes as 
training progressed. We noted earlier that animals spent most of their 
time in stage 3, that is, perfecting their behavior, and we can now con-
clude that gradual improvements had an important role in this, more 
so than sudden marked changes. The pattern of introductions within 
sessions is even more striking—the majority of states were introduced at 
the very start of a session. This resonates with previous findings about 
change points in behavior occurring at session boundaries16.
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exclusively on the states that first brought the mouse into a new stage. That is, for 
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and only when that state was type 2 from its inception. For instance, for mouse 
KS014, this was state 4, which started as type 2 before using the slow process to 
become type 3. Colored diamond markers on the leftmost and rightmost plots 
indicate the average value of the weights of the very first state of each mouse and 
of the dominant state on the last session, respectively. To prevent biases from 
canceling out across the population, we split the bias weights into the following 
two groups: starting out below 0 (bias left) or starting out above 0 (bias right). 
While contrast sensitivities increased both through fast and slow changes, it is 
noticeable that biases stayed almost constant throughout the lifetime of a state 
on average, but changed more noticeably through sudden transitions.
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Interindividual differences and variability. So far, we have high-
lighted general patterns during learning, but perhaps even more salient 
than these similarities was the wide-ranging variability across animals. 
Such differences are already visible in many of the plots above. Biases 
in type 1 states spanned the entire range of possible response patterns. 
Similarly, type 2 PMFs appeared to be randomly biased toward one side 
or the other, or, rarely, symmetric. We were particularly surprised to 
find no regularity between type 1 and type 2 biases. Of the 56 mice in 
which type 2 onset occurred suddenly, 31 had expressed the same direc-
tion of bias (average choice from the PMF being more than 5% away from 
50%) as the new type 2 state in any previous type 1 state, whereas 25 had 
not (two-sided binomial test for whether the proportion of previously 
expressed biases differs from 0.5 gives P = 0.504). Thus, we were unable 
to predict future biases of the animal from its stage 1 biases.

The number of sessions mice required to learn varied greatly, 
spanning an order of magnitude. Surprisingly, many animals with 
a large number of sessions were fitted by a small number of states, 
which changed considerably via the slow process, as exemplified in 
Extended Data Fig. 1 (notably, our recovery analyses indicate that the 
model can cope effectively with long training trajectories, as described 
in Methods). We revisit this issue in the ‘Discussion’.

The number of sessions spent in the different stages was similarly 
highly variable. To gain insight into the factors underlying the learn-
ing steps between the stages, we analyzed the correlations between 
the number of sessions spent in them. The simplex plot does not 
strongly indicate any patterns. We quantify this as follows: duration 
of stage 1 to stage 2—Pearson’s r = 0.21, P = 0.015; stage 1 to stage 3—
Pearson’s r = 0.04, P = 0.685; stage 2 to stage 3—Pearson’s r = 0.14, 
P = 0.095 (n = 134 mice). Notably, the main chunks of training time, 
stages 1 and 3, show no correlation whatsoever. A speedy understand-
ing of the basic contingency of the task, therefore, did not tend to go 
along with the ability (or will) to perfect this behavior quickly, sug-
gesting that they required different competencies. The strongest 
correlation exists between stages 1 and 2, which makes sense insofar 
as they were both concerned with discovering how to make use of the 
stimulus information.

Beyond the training sessions analyzed here, the mice underwent a 
further phase (‘biased block training’, in which left or right stimuli domi-
nated in blocks of 20–100 trials). Consistent with our other results, the 
length of this phase also turned out not to positively correlate with the 
total prebias training duration, nor with any of the stage durations. At 
most, there was a negative correlation between the overall bias training 
time and the stage 3 duration (see Supplementary Results for details).

Discussion
We presented a highly flexible model that describes the stages of learn-
ing from the very first day an animal interacts with a task until it becomes 
an expert. Using it on the shaping sessions of the IBL decision-making 
task, we showcased a number of useful capabilities of this approach. 
It allowed us to distinguish fast, abrupt transitions in behavior, and 
slower, gradual ones. Learning on this task decomposed into the fol-
lowing three distinct stages, through which almost all animals went: 
initial, undifferentiated and often biased behavior; partial, one-sided 
understanding of task contingencies; and, finally, full understanding 
of the task. While these broad-stroke characteristics were consist-
ent across mice, and indeed resonate with recent results from other 
tasks33,34, the details of behavior in these stages differed considerably 
across the population. Similarly, the way they progressed through 
these stages differed widely in both its duration and the composition 
of the sudden and gradual steps.

We found only a weak correlation between the time it took indi-
vidual mice to progress through some of the behavioral stages, sug-
gesting that they had to draw upon largely different skills to learn the 
requirements of the task. Similarly, animals expressed varying, largely 
uncorrelated, biases across the stages of learning. They might therefore 
have different sources—in stage 1, when the mice paid no attention to 
the stimulus, biases might be motoric; in stage 2, they could have been 
an expression of the side that individual mice happened to notice first 
as being informative; in stage 3, they might have stemmed from differ-
ences in sensory acuity. Beyond the initial training considered here, the 
duration of the subsequent biased block training of the animals did 
not exhibit positive correlations to the training phase durations (as 
elaborated in Supplementary Results). This again shows that learning 
was influenced by a large number of factors in our setting.

We originally expected that mice who took many sessions to train 
would be characterized by many states. However, although recovery 
analyses show that the model can cope effectively with long trajecto-
ries, this was not always the case. Instead, we often saw that few states 
took a long way via the slow process, from uninformed to proficient 
(Extended Data Fig. 1). It will be important to assess the underlying 
nature of these states and their progression by tracking neural data 
through the course of learning.

It is important to note that our model does not require as large a 
dataset as we used. Individuals were fitted by themselves, the model 
proved flexible enough to accommodate considerably different num-
bers of training sessions, and our cross-validation indicates that the 
fits are not critically sensitive to hyperparameter selection, the only 
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part which made use of all subjects combined. Nevertheless, our mod-
eling approach does have a number of limitations. First, the setting 
of the slow change variance parameter, which determined how much 
the behavior of a state could change from one session to the next, has 
a critical role in steering the trade-off between introducing a new 
state versus adapting an existing one. We optimized this parameter 
in terms of cross-validation performance for the entire population 
(Methods). However, the magnitude of slow changes may depend on 
the individual or vary across training time, and thus, a more differen-
tiated treatment might be appropriate. Furthermore, slow changes 
may also occur within a session28, which could be incorporated into 
the model by adding additional time points at which weights can 
change. This might well be necessary to apply our method usefully to 
the sort of more rapid, continuous changes that occur within a single 
session. Another desirable extension would be to allow the duration 
distributions to change over sessions. As training progresses, an 
animal might, for instance, be able to use a highly performant state 
for longer. Similarly, a dynamic transition matrix and dynamic initial 
state distribution might better capture the evolution of state usage 
across training.

The model may be extended by making the states predict addi-
tional observations, as binary choice behavior may limit the power to 
distinguish between behavioral modes. One obvious possibility is the 
reaction times of the animal’s choices; in principle, this would only 
require adding a suitable distribution to produce times for each state 
(for example, from a drift diffusion decision-making process35,36). It 
would likely be necessary to make the distributions dynamic, as the 
reaction times improve with training. Other possibilities include pupil 
dilation or even body posture37.

Previous work using an HMM-based approach discovered demoti-
vated states in behavior during the first 90 unbiased trials per session in 
the subsequent biased block training21. The prevalence of sizable blocks 
of trials during which the animal performs at a decreased level will, if left 
unaccounted for, lead to confounded estimates of model parameters 
and a flawed understanding of the animal’s current skill development 
stage, making it an integral component of a good behavioral model of 
this task. We also find such states, characterized by reduced sensitivity 
to the contrast feature of at least one side, and a strong bias in extreme 
cases, leading to higher-than-normal lapse rates on strong contrasts. 
However, these were not as pervasive as might have been expected 
from ref. 21. For us, a majority of sessions were dominated by a single 
state. The model sometimes acknowledged the dip in performance of 
the animals at the ends of sessions for tens of trials with a separate state 
(as shown in Fig. 2 on multiple sessions). We analyze aspects of these 
trials in ‘Posterior predictive checks’. However, frequently, we just see 
a decrease in the prevalence of all sufficiently represented states. The 
main source of behavioral variability in our data came from learning 
and other large jumps in psychometric space; therefore, the model 
used its capacity to capture these.

Besides task acquisition, our approach to capturing behavioral 
evolution, which has conceptual relations to those used in the animal 
conditioning38,39, structure learning40 and motor learning8,41 literatures, 
should be well suited to model other progressive changes, such as 
those occurring during ageing42. Furthermore, our framework can be 
flexibly adapted to other cases of long-run learning. For instance, it is 
possible to tune the model to capture minute changes within sessions 
rather than broad-stroke states across sessions, as here, by adjust-
ing the propensity to infer new states for small changes in behavior. 
Equally, the modular resampling procedure of the model allows it to be 
adapted to different kinds of observations, for example, multinomial 
or Gaussian, by simply swapping out the inference mechanism of this 
component (although only some distributions are convenient for the 
gradual dynamics). We therefore hope that the tool we developed here 
will enable a wide range of researchers to study behavioral develop-
ment in a systematic and revealing manner.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-025-02130-x.
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Methods
In this section, the data source is described briefly, followed by a 
detailed explanation of the infinite hidden semi-Markov model. Infer-
ence for the logistic regression observation distributions is then cov-
ered, with a focus on the resampling steps. Together, these components 
make up the full diHMM. The aggregation of generated samples is then 
explained, addressing challenges such as label switching and multi-
modality to define clear states. The process for assigning states and 
their PMFs to the three types is described in ‘Psychometric type clas-
sification’ section. Finally, validation analyses are presented, including 
cross-validation for parameter and prior selection, model ablations, 
posterior predictive checks, and recovery of generative models.

Ethics statement
All procedures and experiments were carried out in accordance with 
the local laws and approval was obtained from the following the rel-
evant institutions: the Animal Welfare Ethical Review Body of Univer-
sity College London (P1DB285D8); the Institutional Animal Care and 
Use Committees of Cold Spring Harbor Laboratory (1411117; 19.5), 
Princeton University (1876-20) and University of California at Berkeley 
(AUP-2016-06-8860-1); the University Animal Welfare Committee of 
New York University (18-1502); the Portuguese Veterinary General 
Board (0421/0000/0000/2016-2019).

Animals and behavioral data
The data we used were collected under the IBL protocol, as described 
in detail in ref. 11 and its accompanying materials. The study subjects 
were female and male C57BL6/J mice, aged 3–7 months, which were 
cohoused whenever possible. Mice were kept in a 12-h light/12-h dark 
cycle and fed a diet containing 5–6% fat and 18–20% protein. No sta-
tistical methods were used to predetermine our sample size, but the 
IBL represents a large-scale approach to data collection and offers an 
exceptionally large dataset of learning trajectories (covering more 
individuals than the studies on learning by, for example, refs. 12,13). 
There was no blinding of experimenters, as there were no experimental 
groups. The stimulus sides and strengths that animals were presented 
with were independently drawn for each session (although the debi-
asing protocol could affect these probabilities, and weaker contrasts 
were introduced in a performance-dependent manner). When using 
Pearson’s r to quantify correlation, the data distribution was assumed 
to be normal, but this was not formally tested.

Infinite hidden semi-Markov model
We start by describing the diHMM, focusing on Bayesian inference 
over its random variables. Following ref. 25, we use Gibbs sampling, an 
MCMC algorithm, to realize an iterative resampling scheme over the 
model components, including the PMFs of the hidden states and the 
assignments of the individual trials onto those states. For this purpose, 
all distributions are paired up with conjugate priors in this section, to 
enable simple resampling steps. The posterior distribution is ultimately 
represented by a collection of samples, with every component being 
assigned an explicit value in each sample.

We first describe all the relevant random variables, using the itera-
tor notation from Supplementary Table 1.

The technical backbone of an infinite HMM is a hierarchical Dir-
ichlet process. At the top of the hierarchy of this process is the proto-
typical transition vector

β ∼ GEM(γ), (2)

where GEM (named after Griffiths, Engen and McCloskey) is a Dirichlet 
process without a base distribution, a pure stick-breaking process that 
samples a probability vector over infinitely many elements (which will 
be states in our case). The concentration parameter γ probabilisti-
cally determines the size of the individual sticks and, therefore, the 

number of practically relevant states, with higher γ encouraging more 
states. We put a vague Gamma prior on γ, making it, and thereby the 
propensity to introduce new states, part of the inference as well, with 
γ ~ Gamma(0.01, 0.01).

At the next level, we sample the transition vectors, a classical HMM 
component, πi, of the individual states i. These are tied together via β, 
which is used as the base distribution for a second Dirichlet process

πππi ∼ DP(α,βββ), i = 1, 2,… , L, (3)

πππ0 ∼ GEM(3). (4)

α is another concentration parameter and determines how closely the 
πi are related to β. Sampling the individual state transition vectors from 
this common source formalizes an overall kind of state popularity. The 
higher α, the more like β is πi, ∀i, and so the more the bias in the fre-
quency of state i′ in the particular sample β will be reflected in the 
transitions from i to i′, and so the more popular i′ will be overall. We put 
another vague Gamma prior on it, α ~ Gamma(0.01, 0.01). The initial 
state distribution π0 is drawn entirely separately, with a concentration 
parameter of 3 as a trade-off between allowing new states but not 
encouraging the invention of new states at the start of sessions.

For our inference scheme, we make use of the weak-limit approxi-
mation, which puts an upper limit L = 15 on the number of states, rather 
than using the full infinite process. This simplifies the resampling 
scheme, while still behaving similarly to an infinite HMM if L is suf-
ficiently large. Across the entire population, there were only three 
mice with 12 states, after applying our hierarchical state clustering 
procedure (‘Aggregation and interpretation of chains’ section); all 
other mice used fewer states. Furthermore, the minimum fraction 
of trials captured in states (as described further below) is 99.38% 
(mean = 99.97%), justifying the choice of L = 15 (although a higher 
limit would possibly allow us to capture motivational fluctuations 
better). In particular, we still perform inference over the realized state 
complexity. In the weak-limit framework, equations (2)–(4) turn into 
L-dimensional Dirichlet distributions

β ∼ Dir(γ/L,… γ/L), (5)

πππi ∼ Dir(αβ1,… ,αβL), i = 1, 2,… , L, (6)

πππ0 ∼ Dir(3/L,… , 3/L). (7)

The transition structure within a session is given by

zn,1 ∼ πππ0, (8)

zn,s ∼ πππzn,s−1 , (9)

where zn,s ∈ {1…L} is an indicator for the sth state within a session 
n (which does not align with the trial number), and π0 is the initial 
state distribution.

Given the transition vectors, the workings of the hidden semi- 
Markov model are fairly standard, except that the duration distribu-
tions are specified explicitly rather than being drawn from a geo-
metric distribution (as in a regular HMM). We therefore prohibit 
self-transitions, which makes a data-augmentation scheme for 
resampling necessary, as described in ref. 25. Nevertheless, as in a 
standard HMM, durations are statistically independent of the target 
state of transitions. Durations are drawn from a negative-binomial 
distribution, with state-specific random variables, coming from their 
own priors

ri ∼ U(5,6, 7,… , 704), i = 1, 2,… , L, (10)

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-025-02130-x

pi ∼ Beta(1, 1), (11)

dn,s ∼ NB(rzn,s ,pzn,s ). (12)

Note the difference between state names i, which hold for the entire 
model, and the session-specific state counters s, which can be used to 
find the current state name via the indicator zn,s. We chose a uniform 
prior over a large range of numbers for the possible values of r, to enable 
long durations, but excluded small values for r (in particular, r = 1 would 
give the geometric distribution). Small values of r encourage transitions 
after a very small number of trials, which would capture the statistics 
of the presentation of left and right stimuli by the experimenter rather 
than the longer-lasting states that we sought. Using cross-validation, 
we ensured that enabling larger values of r did not benefit the fits.

States stay active and generate observations for as long as the 
drawn duration indicates

tn(s) =
k<s
∑
k=1

dn,k, (13)

xn,tn(s)+1∶tn(s)+ds = zn,s (14)

P( yn,t = R) = sig (fn,t ×wxn,t ,n) , (15)

where we defined tn(s) to return the trial on which the sth state of a 
session n starts, which allows for the definition of xn,t, the state on any 
given trial t. We denote the logistic sigmoid function as sig. This takes 
the dot product between the state weights ws,n (which we discuss in the 
next section) and the input features of the current trial fn,t and produces 
the probability over the observation yn,t. The binary response variable 
y has 0 representing a leftward, and 1 a rightward choice. See also 
Supplementary Fig. 2 for a visual summary of these variables.

We summarize this collection of variables as

Θ = {γ,α,β,πππ0, {πππi, ri,pi, {wi,n}
N
n=1}

L

i=1
, {{xn,t}

Nt
n=1}

T

t=1
} ,

where N is the total number of sessions. The connections between these 
variables are visualized in the form of a graphical model in 
Supplementary Fig. 3. The result of inference is a set of samples {Θj}

J
j=1. 

Each sample is a full instantiation of the listed random variables, which 
we can treat as a posterior representation. Gibbs sampling works by 
iteratively sampling each variable from its distribution, given all other 
variables in the model. After updating all variables, the result is one 
new sample within the MCMC chain. Details on how to resample the 
individual components can be found in ref. 25.

Dynamic logistic regression prior and sampling
Gibbs sampling resamples each random variable conditioned on all 
others. Thus, inference over the observation distributions of the states 
is separate from almost all the rest of the model, only using the informa-
tion as to which trial is currently assigned to which state. We drop the 
explicit state dependence i in wi,t for this section, but it is important 
to keep in mind that this sampling scheme is applied to every state 
individually, with each state s being influenced only by trials for which 
xn,t = s in the current sample. We implement slow changes in the charac-
teristics of the states by putting a Gaussian random walk prior on the 
weights wn, allowing for modest change across session boundaries, 
parameterized by the variance σ. We choose a diffuse initial distribu-
tion for the weights and use cross-validation to select the intersession 
variance σ = 0.04 (we performed cross-validation on a range of small 
values, to limit the state adaptation process to small changes)

w1 ∼ 𝒩𝒩(0,8 I), (16)

wn+1 ∼ 𝒩𝒩(wn,σ I), (17)

where I denotes the identity matrix. If a state has no trial assigned 
to it in a particular session, its weights are held fixed during the 
next transition, preventing states from morphing radically during a 
prolonged absence.

Inference for the logistic regression weights is performed using 
Pólya-Gamma data-augmentation, which allows for efficient inference 
in settings with binomial likelihoods43,44, because it is not possible to 
choose a conjugate prior. We review the relevant computations here; 
for a full treatment, we refer to ref. 45. In the first step of the resampling 
scheme, we sample pseudo-observations. This uses a Pólya-Gamma 
distribution PG, by first sampling ωn ~ PG(bn, ψn), where ψn = fn × wn is 
the dot product of features and weights, and bn is the total number of 
times this exact instantiation of features was observed in session n. 
However, the same state is associated with more than just one specific 
instantiation of features (that is, including contrasts of different 
strengths and sides and different response histories). To handle this, 
we treat a single session as multiple different time points, but prevent 
weight changes between time points that belong to the same session. 
In this way, the observations from different features within the same 
session are effectively aggregated. To complete the pseudo-observation 
generation, we need κn = an − bn/2, where an is the number of rightward 
answers observed for the current ψn under consideration. Now zn = κn/ωn 
can be treated as if they were drawn from 𝒩𝒩(ψn, 1/ωn).

This data-augmentation serves the purpose of having the wn emit 
observations with Gaussian noise (after combination with the features 
fn into ψn). Because the prior on w is a Gaussian random walk, this places 
inference in the well-studied realm of Kalman filtering. To resample 
the wn, we use the forward filter backward sample algorithm46,47, which 
filters forward through all the observations using a Kalman filter, 
then samples the sequence of wn backwards through time. A single 
resampling step, therefore, consists of first drawing the Pólya-Gamma 
variables to create pseudo-observations, then using them to sample 
the wn using the forward filter backward sample algorithm.

We consider four features for the logistic regression—the contrast 
on the left side, the contrast on the right side, an exponentially weighted 
history over all previous choices and a bias. Separating the features for 
left and right contrast allows the sensitivities to the two sides to be 
different. Because the notional contrast values do not match the psy-
chophysical difficulty of the contrasts (100% and 50% are both virtually 
equally easy to perceive, not a factor of 2 apart), we apply a transforma-
tion to have a better alignment. For this, we follow ref. 28 and use a tanh 
transformation, mapping the actual contrast c onto the input ̃c  for our 
logistic regression through ̃c = tanh(pc)/ tanh(p), where we follow their 
recommendation and set P = 5, which scales the steepness of the trans-
formation. This maps the contrasts (1, 0.5, 0.25, 0.125, 0.0625, 0) onto 
(1, 0.987, 0.848, 0.555, 0.302, 0).

The regressor for previous answers, enabling perseveration as 
a strategy, proved to be beneficial for cross-validated performance. 
It is associated with the famous law of exercise48,49 and has also been 
found to be exhibited by the mice in the asymptotic regime that arises 
after the sessions that we are presently analyzing31. The same analy-
ses showed no general statistical support for a regressor sensitive 
to the interaction between past choice and past reward, as would 
be reflected, for instance, in win-stay, lose-shift behavior. We imple-
ment the perseveration regressor as an exponentially weighted sum 
over all past trials. We found that weighting previous trials with an 
exponentially decaying filter with a smoothing factor of 0.25 worked 
best (although slightly different parameter settings have almost equal 
cross-validation performance). Thus, we compute this feature on ses-
sion n and trial m as such

1
Z

m−1
∑
k=1

exp(−0.25 k) (2 yn,m−k − 1), (18)
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where Z = ∑m−1
k=1 exp(−0.25 k) is a normalization constant, such that the 

entire exponential filter adds to 1. The transformation 2 y − 1 serves to 
encode responses as −1 and 1, for the purpose of having the persevera-
tive feature sway the current response appropriately. Therefore, this 
feature reaches its maximal value of 1 if all previous responses were 
rightward and −1 if they were all leftward, putting it on the same scale 
as the other features. Timeout trials, where the animal did not respond 
before 60 s had passed, while skipped for the logistic regression of 
responses, are taken into account for the previous answer regressor, 
encoded as 0.

Aggregation and interpretation of chains
We generally generated 48,000 samples from each of 16 chains (with 
different starting points), discarding the first 4,000 as burn-in. We 
assessed convergence of the chains using the classical measure ̂R50 and 
generated more samples by continuing each chain if necessary 
(although not all animals ever reached a sufficiently low ̂R score, we 
excluded 12 animals for this reason). ̂R compares intrachain and inter-
chain variability of bespoke, state-independent features of the chains. 
To detect differences in the variances of the chains and other problems, 
which ̂R is known to miss, we also used folded- ̂R and rank-normalized- ̂R
51. We reduced the memory cost by thinning the chain, using only every 
25th sample (we did this purely for memory reasons, not because it is 
necessary for MCMC algorithms52). For a first pass, we sought to discard 
chains that differed substantially from other chains in the explored 
region in parameter space, either because they never reached the 
relevant parts of it or because they spent disproportionate amounts 
of time in some modes over others. This is a known problem for MCMC 
algorithms in multimodal environments and can be mitigated by taking 
nonmixed chains and combining them via stacking53. However, because 
our goal here is not prediction, we still want to focus on finding and 
visualizing the most important modes of the posterior, which we did 
by combining the (possibly not perfectly mixed) chains, and consider-
ing the regions of probability space in which they collectively spent 
the most time. Given the slow transitions between different modes, we 
also did not split our individual MCMC chains when computing ̂R, as 
the two halves of the chains were often too different.

As scalars underlying ̂R, we used the concentration parameters α 
and γ, as they are independent of states. We also included general 
properties of the fit—the number of trials assigned to the state with the 
most trials, the second-most trials and the overall numbers of states 
with more than 20% and more than 10% of trials assigned to them (we 
chose multiple cutoffs to gain information about the fit at different 
levels of resolution). By greedily discarding the chains that increase ̂R 
the most, we reduced the number of chains under consideration from 
16 to at least 8. For this, we considered all features and all variants of ̂R 
(normal, folded, rank-normalized) at once, so we were minimizing the 
maximum over all these ̂Rs. We only further processed the chains when 
̂R < 1.05, which is more conservative than some recommendations, but, 

in light of the strong multimodality, more lenient than the newest ones51.
However, it is still not trivial to extract information from the 

remaining chains given the multimodality. There are two main sources 
of multimodality, which are as follows: (1) genuine uncertainty in the 
usage of states or the exact setup of the random variables of the states, 
and (2) mode equivalence with permuted labels (for example, state i = 1 
in the first chain might explain roughly the same set of trials as state 
i = 2 in the second). Although the second source makes evaluating the 
results more complicated, it is in fact just the sampling scheme working 
correctly, as there is nothing special about the particular state labels—
solutions with permuted state labels are functionally equivalent. For 
the same reason, even within a single chain, a relatively consistent set 
of trials might be explained by one label for some part of the chain, 
but by a different label in another. Indeed, we frequently observed 
this kind of label switching, where one state completely took over the 
trials of another within a few sampling steps. In the limit of infinitely 

many samples, we can expect any trial to have a uniform distribution 
over the state label assigned to it; the only important question is which 
other trials were usually accounted for by the same state as the given 
trial within suitably similar samples.

To formalize the necessary abstraction from direct state assign-
ments, we computed co-occupancy matrices Cj for each sample j. Cj is 
a matrix of size T × T, with T being the total number of trials across all 
sessions of a mouse, whose t, mth entry reports whether trials t and 
m (for convenience, dropping the additional session label) used the 
same state in sample j

C j
t,m = �(xt = xm). (19)

We used these co-occupancy matrices as a basis for the following two 
different processing steps: (1) at a coarser resolution across trials, we 
applied dimensionality reduction to find posterior modes; (2) at full 
resolution, we averaged Cj across similar samples j to derive a matrix 
that describes the mutual affiliation of trials, allowing us to overcome 
the labeling issues. Both steps are reminiscent of representational 
similarity analysis54, in that, instead of comparing two samples directly, 
we compare state co-occurrence within the samples.

In principle, to explore the posterior, we could have flattened each 
Cj into a T2 vector and applied principal components analysis (PCA). 
However, there were too many trials per mouse (of the order of 15,000) 
to do this at full resolution, so we binned the trials into 200 bins, ignor-
ing session boundaries, and then used the Wasserstein distance to 
measure state co-occurrence between the bins. That is, we define 
modified matrices C′j as

C′jt,m =
L
∑
i=1
1 − |p j

t,i − p j
m,i|, (20)

where p j
t,i is the proportion of trials in bin t, which is assigned to state 

i in sample j. C′j  reduces to Cj for bins comprising a single trial. We 
then plotted individual samples in the first three dimensions of the 
PCA space arising from flattened versions of C′j , as shown in 
Supplementary Fig. 4.

In doing this, we found that the posterior for a number of animals 
wanders itinerantly between different modes, reflecting true uncer-
tainty. These modes are distinct solutions and should not be blended. 
To isolate them, we performed Gaussian density estimation in the 3D 
PCA space to identify the ones that were most prevalent, as the regions 
of highest estimated density. We used this clustering to select samples 
j ∈ 𝒥𝒥η that were sufficiently similar as to comprise an individual mode 
𝒥𝒥η. For now, we did this by hand; however, the process could be made 
more formal by fitting a mixture of Gaussians to the posterior and then 
selecting samples around the means of the Gaussians with sufficiently 
large mixture weights. We selected at least 400 samples from a mode 
to form a representative collection.

Next, we sought to understand how trials within that mode were 
co-assigned to states. To do this, we averaged the co-occurrences 
Cη = 1

|𝒥𝒥η |
∑j∈𝒥𝒥ηC j and treated ̃Cη = 1 − Cη as a distance matrix, where trials 

were close if they shared a state in most samples in the mode. We then 
performed hierarchical clustering on ̃Cη

, using as a cluster distance 
d(υ, ν) = max( ̃Cη

υ[k],ν[l]), k ∈ υ; l ∈ ν , which took as the distance between 
clusters the maximum distance between any two trials in the clusters 
υ and ν. The result of the hierarchical clustering was a tree on the indi-
vidual trials; cutting this tree at a certain level leads to a specific cluster-
ing. Thus, cutting at, say, 0.6 means that we only have clusters in which 
every trial was explained by the same state in at least 40% (1 − 0.6) of 
the samples. For our plots, we cut at 0.95, which empirically returned 
good results. Although this meant that trials needed to use the same 
state in only 5% of samples to be in one cluster, most trials were assigned 
to the same state much more frequently (Supplementary Fig. 5). This 
also shows a number of alternative clusterings from different 
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thresholds, demonstrating that there is little change across a wide 
range of thresholds—the 95% threshold leads to 8 states with 100% trial 
coverage, an 80% cutoff leads to 9 states and 99.92% coverage, a 50% 
cutoff gives 12 states with 98.77% coverage and, finally, a threshold at 
20% gives 15 states and 95.27% coverage. We can thus see that low cri-
teria led to trials becoming unassigned and some states splitting apart, 
which is why we chose a rather high cutoff. A further verification that 
the procedure and its threshold gave a faithful representation of the 
collection of samples comes from comparing the overall solution 
against individual solutions from single samples. Empirically, these 
did indeed align. Our later recovery analyses also used this approach.

The states we show are therefore defined at heart by sets of trials. 
To compute the PMFs of such a set, we first considered a single MCMC 
sample and noted which states it assigns to the trials within this set on 
a session-by-session basis (although each individual trial only had one 
state assigned in a single sample, for the whole set of trials, it usually will 
not just have been a single state, due to random fluctuations, but mostly 
a single state). We turned the psychometric weights of these states into 
PMFs, over which we then averaged (in a weighted manner, considering 
how often any state occurred in the set of trials). For a single sample, 
this resulted in an average PMF of that state for each session. This then 
got averaged across samples within a cluster (evenly over all selected 
samples of a mode) to obtain the ultimate PMFs of this state.

To determine how closely a single trial is connected to its assigned 
state, we averaged the proportions of samples in which it was in the 
same state as all the other trials assigned to this state. That is, for a given 
trial t, we took a row of the consistency matrix Cη

t  and considered only 
the entries corresponding to other trials within the state under con-
sideration. We then averaged over those entries, yielding the average 
proportion of co-assignment. We think of this as a proxy of the posterior 
over which state a trial is assigned to, and we show it in Fig. 3.

Psychometric type classification
We observed by eye that the PMFs that the model found for the behav-
ioral states had a tendency to fall into one of the following three charac-
teristic classes: flat (type 1), half-tuned (type 2) and fully tuned (type 3). 
However, the boundaries between the classes were blurry, so we sought 
an objective distinction, recognizing its inevitable arbitrariness. Note 
that a state may change its type through the slow process; it is thus a 
session-dependent classification.

The measure we used in the main paper is the mean reward rate 
implied by the PMF on easy trials (100% and 50%), ignoring the effects 
of perseveration (and the debiasing protocol). We chose the reward 
rate because this tends to grow as the animals proceed from ignorance 
to competence. We chose to assess only the easy trials because early 
PMFs were not defined on the lower contrasts (because these stimuli 
were not presented), and including more difficult contrasts can lead 
to lower reward rates for more broadly defined PMFs, even when they 
are better on easy contrasts. Supplementary Fig. 6 shows the distribu-
tion of such reward rates across all states. It is apparent that there is a 
rather clear grouping of PMFs with reward rates below 0.6, defining 
type 1. The boundary between types 2 and 3 is somewhat less evident, 
implying that edge cases will be hard to assign. The threshold reward 
rate of 0.78 served reasonably well, as evidenced in Fig. 4. We further 
split type 2 PMFs on whether they were left-biased, right-biased or 
symmetric. We considered a PMF symmetric if its error rate on 100% 
leftwards contrasts was within 10 percentage points of the error rate 
on 100% rightwards contrasts.

Cross-validation and ablations
Our model contains a number of free parameters that we set using a 
cross-validation procedure. We used this most notably for the variance 
σ of the normal distribution over how much the logistic weights of a 
state can change from session to session and the decay constant of the 
exponential filter over previous actions, which are fixed parameters 

that are not inferred during the inference procedure. This inference 
procedure is itself guided by priors, which we set to be vague, exert-
ing minimal influence upon the ultimate posterior. However, their 
precise setting can nevertheless also be evaluated via cross-validation. 
This applies to the two gamma distributions over the concentration 
parameters α and γ and the priors over the parameters of the states’ 
duration distributions. Cross-validation also allowed us to verify that 
our usage of the weak-limit L = 15 did not hurt our model fits, and that 
including a win-stay lose-switch feature, indicating which side was or 
would have been rewarded on the previous trial, was not beneficial in 
capturing animal choices during learning.

We used a tenfold cross-validation scheme, randomly masking 
10% of trials on each session. Because we were not interested in the 
details of the fits, we only ran one chain of 10,000 samples for each 
parameter combination and cross-validation fold we wanted to test 
and evaluated the quality of the fit through the summed negative 
log-likelihood on the last 4,000 samples on the held-out trials, which 
was sufficient for a stable estimation of the held-out log-likelihood. 
Despite this time-saving strategy, there were too many combinations 
of parameters to check exhaustively, so we used a manual heuristic 
search over promising combinations, finding an optimal setting and 
verifying that any relevant deviations from it only lowered the negative 
log-likelihood (Supplementary Fig. 7, left). As another measure to save 
computation, we only evaluated two folds of each animal for each 
parameter setting, but because we evaluated our model on 154 mice 
(this was before exclusions due to missing sessions or too low ̂R), we 
still evaluated on a substantial number of folds in total.

We tested the perseveration decay constant over the set of values 
(0.15, 0.2, 0.25, 0.3, 0.35, 0.4), the variance σ over the set (0.01, 0.02, 
0.03, 0.04, 0.06, 0.12, 0.24), representing the small range that we found 
desirable for a consistent state identity, as well as some larger values to 
ensure that they did not outperform smaller variances. The search also 
included a larger support for the r parameter of the duration distribu-
tion (running from r = 2 to r = 905) and different settings of the α and 
γ concentration priors, which were independently varied over the set 
((0.1, 0.1), (0.01, 0.01), (0.001, 0.001)).

Many of the parameter configurations yielded comparably high 
performance. Of note, the parameter setup closest to the selected 
model simply allows higher r values in the duration distribution, repre-
senting a strict extension of the model that, however, does not improve 
fit. When studying the correlations across two different parameter set-
tings, but within the same animal and the same cross-validation fold, 
we found extremely strong correlations, with only slight offsets from 
the identity line and a small handful of outliers accounting for the dif-
ferences. This provided evidence that the fits were fundamentally the 
same, and different mice did not significantly benefit from different 
settings, allowing us to simply take the best among many good settings 
and proceed with it for the population-wide fit. These settings were the 
ones specified throughout the study—perseveration = 0.25, σ = 0.04, 
ri ~ U(5, 6, 7, …, 704) and both α and γ ~ Gamma (0.01, 0.01).

In addition to finding the best parameters for our fit, we also used 
this approach to ablate the most important model components, verify-
ing that all aspects of the model were necessary to provide as good a 
fit as possible within our framework (Supplementary Fig. 7, right). In 
particular, we tested the best parameter setting we found, but did not 
allow for change in weights between sessions (effectively removing 
the slow process of the model), both with 3 states (thus emulating the 
work described in ref. 21, although with duration distributions) and 
with the usual upper bound of 15 states. Allowing for 15 states but no 
slow process led to only somewhat worse performance than the full 
model (Supplementary Fig. 7, right—‘15 states, no slow proc.’), but did 
so at the cost of significantly increasing the usage of short-lived states. 
We tested this by considering how many states explained more than 
x% of trials of an individual animal (which can be read directly from 
the cross-validation samples, not requiring the sample aggregation 
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procedure described previously). The full model makes more use of 
highly prevalent states that explain more than 20% of trials—1.7 ± 0.53 
(mean ± s.d.) per animal versus 1.07 ± 0.67 of such states for a model 
without the slow process (two-sided Mann–Whitney U test, U = 21858.5, 
P < 1 × 10−30, effect size = 1.18 (standardized mean difference with s.d. 
over full model state number), n = 154 mice), but fewer overall states, 
such as any that explain more than 2% of trials—5.16 ± 1.62 versus 
9.13 ± 2.14 (two-sided Mann–Whitney U test, U = 87773.5, P < 1 × 10−73, 
effect size = 2.45, n = 154 mice). Thus, while the removal of the slow 
process can mostly be made up for by an increased reliance on new 
states (for which our model has plenty of capacity), the slow process 
benefits the fits by tying together highly similar trials across short 
timescales, rather than arbitrarily separating them when behavior 
gradually changes too much to be accommodated by a single state.

We also allowed only one state (including the slow process), remov-
ing the notion of multiple states from the fit (Supplementary Fig. 7, 
right—‘1 state’). This model performed, perhaps surprisingly well, but 
because a session is usually dominated by a single state, a single adapt-
able state may perform somewhat well. We tested whether a win-stay 
lose-switch (WSLS) feature, indicating which choice was or would 
have been rewarded on the last trial, was beneficial, which it was not 
(Supplementary Fig. 7, right—‘Best + WSLS’), and whether the perse-
veration feature could be removed, which it could not (labeled ‘No 
perseveration’). Finally, we also tested the improvement due to the 
duration distributions (which replaced the implicit geometric duration 
distribution of an HMM; Supplementary Fig. 7, right, ‘No duration (exp. 
only)’). This test proved somewhat problematic within our framework, 
as restricting the model to implement durations through the transition 
matrix led many of the posteriors to settle on an unsatisfying solution. 
In this solution, states were extremely strongly biased leftwards or 
rightwards and rapidly alternated, depending on the choice of the 
animal. Such a model has, of course, almost no predictive power on 
held-out trials. This is seemingly a consequence of the hierarchical 
nature of the transition matrix—if we often transition into a state (and 
without duration distributions, we have a state transition after every 
single trial, with most of them being self-transitions), it becomes gener-
ally attractive in the iHMM framework, encouraging transition distri-
butions that are much closer to uniform than one would expect for a 
reasonable notion of temporally extended states. We thus implemented 
geometric distributions that prefer longer states by fixing r = 1, but 
biasing the prior over p. We performed another small cross-validation 
sweep and present here the best model found in this way.

Posterior predictive checks
To identify any mismatches between our modeling assumptions and 
actual behavior, we performed posterior predictive checks using mul-
tiple test statistics. The goal of this analysis was to determine whether 
responses generated solely from posterior samples reproduced the 
behavioral trends observed in the actual data. We simulated behavior 
for each session of an animal by taking each sample from our selected 
posterior mode, initializing with the state that was the actual state 
on the first trial for that sample and then generating responses. We 
needed to initialize with the true state, because the model uses a static 
initial state distribution π0, so a random initialization would lead to an 
unstructured mix of proficient and inexperienced behavior. However, 
after initializing the first state, the model ran completely indepen-
dently—we drew a duration from the duration distribution of that 
state, using posterior parameters, randomly sampled a next state from 
the transition matrix once a state ended and sampled responses from 
the observation distribution of the current state, given the current 
features. These features included the contrast that was presented on 
that trial and a recomputed perseveration feature based on the choices 
of the current run of the simulation (so notably not the perseveration 
feature based on the choices of the animal). This unguided generation 
of behavior thus represents a very stringent test of the posterior fit.

We visualized the results by plotting actual behavior in relation to 
the distribution created by simulating behavior three separate times 
with each sample (because we use at least 400 samples from a mode, 
this equates to >1,200 simulations). As metrics of interest, we chose 
the percentage of correct choices in a session and the percentage of 
rightward choices for each contrast. We plot the accuracy of a single 
individual (the mouse of Fig. 2) in Supplementary Fig. 8a and the PMF 
on the last session of that animal in Supplementary Fig. 8b. As we can 
see here, behavior simulated from the posterior generally provides 
both a tight as well as accurate estimate around the true behavior.

To summarize the relationship between true behavior and the 
simulated distribution across the population, we calculated the per-
centiles of the empirical values within the simulated distribution, 
visualized in Supplementary Fig. 8c,d. In an ideal case, the histograms 
over these percentiles would be uniform, indicating that the posterior 
provides an unbiased and calibrated estimate for the true behavior. 
This is not quite true here—we can see that accuracy has a modest 
tendency to be overestimated (that is, the true accuracy tends to 
fall onto lower percentiles of the simulated distribution). As men-
tioned in the ‘Discussion’, behavior often degrades toward the end of 
a session (almost by necessity, as it is one of the session termination 
criteria), but this was not always acknowledged with a separate state 
by the model, perhaps because behavior degrades in a gradual and 
inconsistent manner across sessions. We suggest this as an interesting 
direction for a possible extension of our framework, by combining the 
states with a mechanism for change on a shorter time scale, similar 
to the work described in ref. 28. However, implementing this in a way 
that keeps states distinct and has them retain their identity over long 
time periods seems challenging, in the face of motivational changes 
that occur gradually but can change behavior quite notably on the 
order of tens of trials. Note that the overestimation of accuracy also 
occurs on sessions on which the model does ultimately include a 
state that reflects a substantial reduction in performance. This hap-
pens because the model sometimes fails to appropriately transition 
to this worse state (given that it is only a descriptive model with no 
foresight of when a session ends). Thus, accuracy in free simulations 
can be too great.

While the percentage of rightwards choices across contrasts forms 
a seemingly uniform distribution, splitting the histogram over the 
different contrasts reveals that there is a modeling assumption that 
biases the estimates for the different contrasts somewhat, as shown 
in Supplementary Fig. 8e. Most notably, for the 100% contrasts, the 
model underestimates how accurate the animals are (by overestimat-
ing the % rightwards choices on leftwards contrasts and vice versa). 
Note, however, that the insets for these contrasts show that the actual 
deviation is very small. Somewhat more subtly, the opposite occurs 
for the respective 50% contrasts. These deviations arise from the psy-
chophysical transform we borrowed from refs. 21,28, namely the tanh 
transformation on the raw contrast values. The 100% and 50% contrasts 
are mapped onto very similar values (1 and 0.987, respectively), strongly 
coupling the percentage of rightward choices for the two contrasts, 
requiring them to take on almost the same value. This is intuitively 
desirable—allowing a smoothing over the different contrast strengths 
and reducing the number of parameters in our logistic regression 
(using a general ‘leftwards sensitivity’, rather than having a separate 
parameter for each contrast). While 100% and 50% are very different in 
terms of absolute value, they are both highly visible, meaning their dif-
ference from a psychophysical perspective is rather minor55. Neverthe-
less, as it turns out, some mice can occasionally exhibit rather different 
behavior on the two contrasts (Supplementary Fig. 8e, insets), leading 
to an underestimation for the stronger contrast and an overestimation 
on the weaker one.

The 0% contrast plot, on the other hand, exemplifies a posterior 
predictive check without such reservations—there is no noticeable bias, 
and the posteriors appear correctly calibrated. The predictive checks 
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thus serve as an important tool to study the limitations of our modeling 
approach, highlighting that degrading behavior is not fully captured 
by the model and that the smoothing over contrasts imposes some 
structure onto the PMFs that biases the performance estimates. To 
study further the effect these biases in the model have upon the fits, we 
analyzed the magnitude of the bias imposed (Supplementary Fig. 16). 
As we can see, most of the differences fall within a close range around 
the posterior mean.

As a proof of concept, we refitted the model with a different PMF 
parameterization to see whether this could address the observed 
issue. This alternative parameterization was inspired by another line 
of work that uses neural networks to capture animal behavior on the 
IBL task. Using this, we mapped the contrast strengths (1, 0.5, 0.25, 
0.125, 0.0625, 0) onto (1, 0.899, 0.705, 0.416, 0.207, 0) for the logistic 
regression, whereas the tanh transformation mapped onto (1, 0.987, 
0.848, 0.555, 0.302, 0). The results of repeating the posterior predic-
tive checks on a representative random sample of mice (n = 84) using 
this new parameterization are shown in Supplementary Fig. 9. This 
reveals that the tension between the predictive distributions on 100% 
and 50% contrasts was mostly caused by the PMF parameterization, 
rather than by the model itself. Because the fits under this new PMF 
did not qualitatively differ from fits under the old parameteriza-
tion, we did not redo our analyses, but accepted this as evidence for 
the suitability of the model and fitting procedure. The remaining 
slight tension between the predictions on strong contrasts might 
be caused by changes in the perceptual sensitivities of the animals 
during learning, which is an interesting avenue to pursue in further 
studies of learning.

Model recovery
We tested the model and our inference procedures by fitting to data 
for which the ground truth was available. For this, we instantiated all 
the random variables of the model to specific values and generated 
responses from it. This was performed for multiple different variable 
settings to assess the accuracy of the fitting procedure in all relevant 
regimes and using input data (that is, contrast sequences) from actual 
training trajectories. The data generated this way were processed 
exactly as those from the IBL mice.

We paid particular attention to assessing the strength of the 
inductive biases of the inference procedure—particularly in terms of 
the number of states it inferred (given that this could be potentially 
unbounded, within our weak-limit approximation) and the degree of 
change between sessions (because slow and fast state changes could 
interact). We tested multiple settings in which all the data were actually 
generated from a single state, to test whether the model would incor-
rectly split behavior into multiple states. In one setting, the psycho-
metric weights of the state stayed constant throughout all sessions. 
In another, the weights gradually evolved from poor performance to 
proficiency (at constant steps of a magnitude that corresponds to a 
variance of 0.0311; the variance of the fitting procedure was fixed to 
0.03). Both fits recovered their ground truth successfully, explaining 
virtually all trials with a single state, as can be seen for the example of 
the changing state in Supplementary Fig. 10. We also tried a variation 
of the latter situation, in which the psychometric weights changed 
in (proportionally smaller) steps on every single trial, rather than all 
at once at a session boundary (as the model assumes). This, too, was 
recovered by the model with only one state (which we consider the 
best possible solution, given that the generative process was outside 
the model class).

We also successfully recovered settings from 2 to 9 states, 
with and without session-to-session variation on the weights, with 
strongly varying trial proportions between the different states 
(Supplementary Fig. 14) and of varying overall training lengths (par-
ticularly to test whether long training trajectories lead the model to 
impose fewer states, making more use of the slow process), as seen in 

Supplementary Fig. 11. The model was also tested on a setting with com-
pletely implausible PMFs, but with the added difficulty of having a larger 
number of states active within each session (Supplementary Fig. 15). 
This, too, was captured accurately. These successful recoveries suggest 
that the model can uncover states that truly correlate with distinct 
modes of animal behavior.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Please follow the instructions at https://int-brain-lab.github.io/
iblenv/notebooks_external/data_download.html to download the 
data used in this article. Our public code contains a script to down-
load the dataset.

Code availability
The code used for this analysis, as well as installation instructions 
for the necessary packages, can be found at https://github.com/
SebastianBruijns/diHMM.
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Extended Data Fig. 1 | Model fit to a mouse with a larger number of 
sessions. Using the plotting conventions of Fig. 2, this depicts the states and 
corresponding psychometric functions identified in a mouse that required  
36 sessions to learn. This illustrates the counterintuitive phenomenon that long 
training trajectories were sometimes fitted by the model using a small number 

of states. Some of these states, particularly state 1 in this example, underwent 
substantial changes through the slow process, spanning the range of uninformed 
to proficient behavior (note that the type labels to the right of the PMFs are 
determined by the highest type reached by a state; thus, state 1 is labeled as type 3 
even though it began as type 1).
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection https://github.com/int-brain-lab/iblrig contains the code running on data collection rigs, precise task protocol identifiers are listed within the 

dataset.

Data analysis Our analysis code can be found at the repository linked below. We make use of Markov chain Monte-Carlo algorithms, from these packages: 

 

pybasicbayes (original version='0.2.4', our version linked below) 

pyhsmm (original version='0.1.6', our version linked below) 

pypolyagamma (version='1.2.3') 

 

 

Code availability: 

 

The analysis code with installation instructions is deposited at https://github.com/SebastianBruijns/diHMM 

 

This uses: 

 

https://github.com/SebastianBruijns/sab_pybasicbayes a modified version of https://github.com/mattjj/pybasicbayes 

 

https://github.com/SebastianBruijns/sab_pyhsmm a modified version of https://github.com/mattjj/pyhsmm

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Please follow these: https://int-brain-lab.github.io/iblenv/notebooks_external/data_download.html instructions to download the data used in this article. Use for 

example the following code snippet to download the data using Python. 

 

from one.api import ONE 

import re 

 

# use password as indicated on the website 

one = ONE(base_url='https://openalyx.internationalbrainlab.org', password='*****') 

 

regexp = re.compile(r'Subjects/\w*/((\w|-)+)/_ibl') 

datasets = one.alyx.rest('datasets', 'list', tag='2023_Q4_Bruijns_et_al') 

 

# extract subject names 

subjects = [regexp.search(ds['file_records'][0]['relative_path']).group(1) for ds in datasets] 

# reduce to list of unique names 

subjects = list(set(subjects)) 

 

for subject in subjects: 

    trials = one.load_aggregate('subjects', subject, '_ibl_subjectTrials.table') 

    training = one.load_aggregate('subjects', subject, '_ibl_subjectTraining.table') 

    # save data

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 

other socially relevant 

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Mice were taught a perceptual decision-making task: On each trial, a patch of black bars was presented on a white background, on 

either the right or left side of a screen. Mice used a wheel to indicate which side the contrast was on, for a water reward if correct. By 

modulating the strength of the contrast, a trial could be made more or less difficult. Mice were only presented easy contrasts at the 

start, more difficult contrasts were introduced as performance improved. This gave us a quantitative experimental study.

Research sample We analysed 134 C57BL6/J mice aged 3-7 months obtained from Jackson Laboratory or Charles River. We used the publicly available 



3

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Research sample IBL dataset and included all subjects. We did not therefore determine the data collection ourselves, but relied on an existing, 

exceptionally large data set. In particular, the number of individuals is larger than that used by the studies of e.g. Kastner et al. (2022) 

or Akiti et al. (2022).

Sampling strategy Our sampling strategy was convenience/exhaustive. To our knowledge we used all mice which trained under the standard IBL 

protocol without any manipulations, but we did not make entirely sure that none were missed. We did not specifically leave out any 

appropriate mice, but we did exclude mice which had incomplete training trajectories (missing sessions for whatever reason).

Data collection Data was collected using the IBL rig (https://github.com/int-brain-lab/iblrig) setup, in particular mouse responses were recorded via 

computer. All the details can be found in the paper describing the experiment setup: https://elifesciences.org/articles/63711. 

Researchers were not blind to experimental condition, as there were no conditions. Researchers were effectively blind to the study 

hypothesis, as hypotheses were formed during model construction, which was mostly after data collection had concluded.

Timing Samples were collected beginning on the 3rd of November 2019 and ending on the 8th of April 2022.

Data exclusions 12 subjects were excluded from the analysis because the R^hat metric was too bad (above 1.05) on their chains, as described in the 

paper. The R^hat metric quantifies how much the chains vary from one another, and indicate poor convergence. We also excluded 

mice with any missing training sessions.

Non-participation We analysed mice which completed training, in that sense there were no dropouts.

Randomization There were no experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals C57BL6/J mice aged 3-7 months obtained from Jackson Laboratory or Charles River.

Wild animals Study did not involve wild animals.

Reporting on sex Sex was not considered in this study. We wanted to consider learning in general.

Field-collected samples Study did not involve samples collected from the field.

Ethics oversight All procedures and experiments were carried out in accordance with the 

local laws and following approval by the relevant institutions: the Animal Welfare Ethical Review 

Body of University College London [P1DB285D8]; the Institutional Animal Care and Use Committees 

of Cold Spring Harbor Laboratory [1411117; 19.5], Princeton University [1876-20], and University of 

California at Berkeley [AUP-2016-06-8860-1]; the University Animal Welfare Committee of New York 

University [18-1502]; and the Portuguese Veterinary General Board [0421/0000/0000/2016-2019].

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants


	Infinite hidden Markov models can dissect the complexities of learning

	Results

	Single animal fit

	Fits across the population

	Interindividual differences and variability


	Discussion

	Online content

	Fig. 1 Behavior and modeling overview.
	Fig. 2 diHMM fit to mouse KS014.
	Fig. 3 Excerpt of state assignments in session 12 from mouse KS014, also shown in Fig.
	Fig. 4 Summary of the PMFs associated with the different types.
	Fig. 5 Proportions of sessions it took each mouse to reach the next major step in training, as defined by the three stages.
	Fig. 6 Evolution of the weights of states on average, through slow and sudden changes.
	Fig. 7 Histograms of all state introductions.
	Extended Data Fig. 1 Model fit to a mouse with a larger number of sessions.




