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Learning the contingencies of a task is difficult. Individuals learninan

idiosyncratic manner, revising their approach multiple times as they
explore and adapt. Quantitative characterization of these learning curves
requires amodel that can capture both new behaviors and slow changes

in existing ones. Here we suggest a dynamic infinite hidden semi-Markov
model, whose latent states are associated with specific components of
behavior. This model can describe new behaviors by introducing new states
and capture more modest adaptations through dynamics in existing states.
We tested the model by fitting it to behavioral data of >100 mice learning
acontrast-detection task. Although animals showed large interindividual
differences while learning this task, most mice progressed through three

stages of task understanding, new behavior often arose at session onset, and
early response biases did not predict later ones. We thus provide a new tool
for comprehensively capturing behavior during learning.

Engaging with a new environment or task raises a multitude of prob-
lems—which sensory signals are pertinent to the task, and which are
just noise? What actions are relevant to performance? How should
observationsinformactions? Particularly if the experimenter suddenly
changes an aspect of the task (to manipulate or shape behavior), but
also in stable environments, animals solve these problems through a
mixture of apparent leaps in performance and slow accumulation of
improvements'’. This process of learning is marked by substantial
variability across individuals, who progress at different speeds and
over distinct intermediate stages™. Interindividual differences during
learning are aknown phenomenon", although relatively little studied
(although, for instance, see refs. 12,13). Even if the resulting behavior
is highly similar across animals, variability during learning can make
comparisons across groups in this period challenging. Thisis because
behavior during learning is a complex mixture of differently compe-
tent decision-making modes, prone to sudden shifts in performance

(forbetter or worse), all of which occur on widely different timescales
across individuals. More generally, the idiosyncrasies of the learning
pathmayleaveatrace in performance even after learning has finished
and behavior has stabilized™.

Despite the richness of these dynamics, much of the work on the
modeling of learning has ignored acquisition in its full breadth and
generally considered only how animals adapt to ongoing changes in
facets of tasks, such as reversing reward schedules. By this point in
thetask, the animals have learned the basics of the problem, and those
that failed to learn it have been excluded. One of the reasons for this
neglectof initial learningis that each animal provides only one sample
of alearning curve, whereas for fully acquired behavior, every trial
can typically be viewed as another sample from the learned behav-
ior. This means that learning curve data are generally sparse, further
aggravating the problem of large variability. Here we make use of the
large-scale approachto datacollectionembodied by the International
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Brain Laboratory (IBL; ref. 11) to build a rigorous descriptive model of
the multisession learning curves of more than 100 mice solving a per-
ceptual decision-making task. While we used alarge and varied dataset
for development and testing, the final method does notrequire alarge
number of individuals and should therefore be broadly applicable to
multisession learning data.

Previous work on task acquisition has sought to find the point
in time at which an animal can be said to have ‘learned’ a task, often
defined as reliably above chance performance®. Methods for solving
thiskind of change-point detection (for example, refs. 16,17) typically
make abinary distinction between uninformed and learned behavior,
rather than describing used strategies in detail, or finding possible
intermediate stages. Other previous work addresses strategy inference
morespecifically and does consider learning'®. This involvesinference
on a trial-by-trial basis over a set of simple, preselected strategies,
decaying evidence exponentially over time to track the arrival and
departure of various strategies.

We sought to accommodate the complexities of learning curves
using a descriptive modeling framework that satisfies a number of
desiderata. First, at any point along the curve, the model should cap-
ture an individual’s current repertoire of behaviors, characterizing
its performance. Second, it needs to track this repertoire as behavior
evolves, introducing new components (which we identify as behavioral
‘states’) when change is abrupt (for example, refs. 9,19), detecting the
reuse of a past state if it re-emerges and allowing for slow, gradual shifts
inacomponent, with the steady development of skilled performance
(for example, ref. 20). Third, the collection of components should be
potentially unbounded because we cannot know ahead of time how
many distinct behaviors any individual might exhibit.

We therefore built amodel that combines and extends two recent
approaches. One is from ref. 21 (additional related work in ref. 22),
which describes decision-making performance after learning with a
hidden Markov model (HMM). Each latent state of the model captures
asingle component of behavior as a map from task-relevant variables
to a distribution over choices, via logistic regression. In the case of
perceptual decision-making, this generalizes a psychometric function
(PMF)toinclude other factors (for example, perseveration). The overall
description of behavioris in terms of amixture of different policies that
canswitchrapidly. However, the HMM approach assumes stationarity
ofbehavior across time and is constrained to a fixed level of complex-
ity by specifying the number of states a priori. This weakens its ability
to characterize the dynamic and idiosyncratic progression through
training. To address these issues, we adopted the HMM framework to
capture abruptchanges, except that (1) the states come from a Bayesian
nonparametric structure, allowing for adegree of behavioral complex-
ity thatis only constrained by aninbuilt Occam’srazor and enabling the
introduction of new states for suddenly appearing new behaviors*?’;
and (2) we used a semi-Markov model so that latent states can persist
for nongeometrically distributed numbers of trials.

The second approachis that of ref. 28, which effectively considers
only a single state but allows the logistic regression weights imple-
mented by that state to be dynamic, tracking changes in behavior
through appropriate updates to the weights. We used this so that the
characteristics of our hidden states can evolve slowly, capturing the
other prevalent form of acquisition of skilled performance.

Showcasing our model on behavioral data from the IBL task,
described in ref. 11, we reveal that learning progresses over a small
number of distinct stages that are presentin almost all animals. These
stages apparently correspond to the sequential acquisition of elements
ofthetask—inour case, particularly associated with taking into account
different aspects of the sensory environment inherent to the task.
Although this pattern was shared across the mice, the duration and
diversity of the stages differed greatly between individuals.

We first describe the IBL task and our way of characterizing the
behavior mice exhibit; then we discuss the details of the model by

studying a representative fit to one animal in detail; and finally, we
conclude by summarizing the fits of our model to 134 subjects, high-
lighting similarities and differences across the population.

Results

We analyzed the choices of 134 mice learning a perceptual
decision-making task, each of which underwent, on average, 24.4 ses-
sions (total, >3,200) and ~14,800 trials (total, >1.9 million)". In this
task, head-fixed mice were shown a sinusoidal grating of a controlled
contrast, which had equal probability of being on either the right or
left side of ascreen (Fig.1a). They then had to center it (within 60 s) by
turning a steering wheel in the appropriate direction. Successful tri-
alsled to water reward, whereas unsuccessful trials resulted ina noise
burstandal-stimeout. Trials were self-paced, with mice signaling their
readiness by keeping the wheel still for a period.

Mice learned the task according to a shaping protocol that
gradually introduced more difficult stimuli and actively removed
action biases (Fig. 1b). Accordingly, shaping began with strong con-
trasts—100% and 50%. At the initial stage, there was no perceptual
difficulty; the animals only had to learn the basic contingencies of the
task. Once they had reached sufficient performance on these contrasts
(>80% correct for each contrast type on the last 50 trials), 25% contrasts
were introduced. After performance was also good on this extended
set (same criterion), the remaining contrasts wereintroducedinastag-
gered manner—12.5%, 6.125% and 0%, whereas the 50% contrast was
dropped. For the 0% contrast, one side was randomly rewarded (50%
probability per trial). A debiasing protocol increased the probability
of repeating the stimulus that was just shown when the mouse made a
mistake onaneasy (100% or 50%) contrast. This deterred perseverative
or biased strategies, but could lead to reward rates <50%.

To characterize the course of learning across trials, we devel-
oped a flexible model that segments an animal’s behavior into dis-
crete states that last for variable numbers of trials within a session
and canrecur across multiple sessions. As this is a descriptive model,
we equate a behavior with its corresponding state and, generally, will
not distinguish between the two in the text. We first describe how a
single state generates choice probabilities on a trial for which it was
responsible (Fig. 1c, within circles) and then how we treat multiple
states (Fig.1c, arrows).

As in previous work?"*®, we formalize the response probabilities
for the binary choices of mice through logistic regression (omitting
the rare trials in which the animal timed out by not responding within
60 s). Trial tof session nis described by featuresf, ,comprising (1) the
stimulus, thatis, the contrast on the left and right of the screen, sepa-
rated to allow for different sensitivities to leftwards and rightwards
stimuli, as mice were frequently differently sensitive to the screen
sides in this task; (2) task history, in the shape of an exponentially
decaying average over the last actions—interestingly, mice only used
aperseverative bias, but did not use reward information toimplement
awin-stay lose-shift strategy (as was also observedinrefs.29,30 and, in
the same task at a later stage, inref. 31); and (3) abias term to allow for
side preferences regardless of other features. Labeling the state that
isactive on this trial as x,,,, the responsey, . € {L, R} (for left and right)
is modeled by the distribution

P(yn,t =R)= Sig (fn,t X wxn!t,n) P (4]

where the weights of the states w, ,, Vx are also indexed by session n,
as they can drift across sessions. Here sig(-) is the standard logistic
sigmoid function.

Themodelgeneralizesastandard HMM in the following three ways
that make it especially suited to describe the phases of learning: (1) itis
nonparametric about the number of states; thatis, the number of states
describing the behavior of each individual is separately determined,
accommodating interindividual differences. This characteristic also
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Fig.1|Behavior and modeling overview. a, Sensory decision-making paradigm.
Miceindicated whether a contrast grating was on the left or right of a screen
using awheel. b, Representative behavior of mouse KS014 (also used later). This
shows improvements in behavior and the concomitant extension of the contrast
set. ¢, Visual representation of the main components of the model. Each state,
represented by a circle, has an associated observation distribution, shown
insideits circle. This isimplemented via logistic regression, which considers

the contrast on the current trial and a weighted history of previous choices (the
latter is not shown here). The weights underlying these regressions can change

0 150 300 450 600
State duration

P(rightwards)
P(rightwards)

0.02
0.015
0.01
0.005

Infinite
states

Probability

0 150 300 450 600
State duration

P(rightwards)

Contrast

from session to session, resulting in shifts of the PMFs they represent; we depict
this evolution here with varying shades of color. States are connected to other
existing states via transition probabilities P. Inaddition to that, states also have
the option to transition into a new state, to describe a type of behavior that is not
well captured by any of the existing states. Finally, staying in the same state for
more than one trial is not modeled via a self-transition probability; instead, each
state has its own duration distribution. Panel areproduced fromref. 11 under a
Creative Commons licence CCBY 4.0.

allows the model to capture sudden changesin behavior, asitis ableto
introduce anew state when behavior changes notably (we call this the
‘fast process’; ‘Infinite hidden semi-Markov model’ section). (2) States
are dynamic over sessions, allowing the behavior implied by a state
to change gradually across session boundaries® (the ‘slow process’;
‘Dynamic logistic regression prior and sampling’ section). (3) While
for HMMs the numbers of trials for which asingle state remains active
always follow a geometric distribution, we adopt a semi-Markovian
approach, allowing for more general distributions. Taking all these
additions together, we end up with a dynamic infinite input-output
hidden semi-Markov model (diHMM).

The transition matrix over a flexible number of states and the
evolution of the psychometric weights are defined by priors, and the
Bernoulliobservation model provides alikelihood for each trial, allow-
ing for approximate Bayesian inference (Methods). We performed
this using a Markov chain Monte Carlo (MCMC) algorithm, namely
Gibbs sampling. For a single animal, the entire response and feature
dataacrossall training sessions were fitted together. Individuals were
fitted separately, meaning alarge number of subjectsis not necessary
for the application of our model. Integrating across anumber of Gibbs
samples from multiple Markov chains led to a set of behavioral states
defined by their session-varying weights w, , and duration distribu-
tions, as wellas ahard assignment of every trial onto one of these states.
While all other relevant random variables are specified hierarchically
or ruled by vague priors, the variance for slow changes within statesis
set, as inference over this variable proved problematic; we revisit this
parameter in the discussion.

Single animal fit

We visually summarize the model fit for mouse KSO14 at the resolu-
tion of entire sessions in Fig. 2. This animal exemplified many of the
interesting properties found across the population. Theinferred model
contains eight states, but these states were generally active for only a
small number of sessions before being replaced by others. We number
theminorder of appearance.Inatypical session, the majority of trials
were explained by asingle one; at most, afew were active. Later states

generally represented more adept behavior, although not exclusively.
The mouse started with state 1, which exhibited a flat PMF (far right of
theplot), indicating that the animal did not take into account the side
ofthe sensory input. This state was promptly replaced by state 2 inthe
next session, which also had a flat PMF, although shifted. This change
in bias was strong enough to warrant a new state (rather than the slow
process of changing the existing state), but there was no evidence that
the animal advanced inits understanding of the underlying task.

State 2 lasted four sessions, indicating that behavior remained
relatively consistent during this time. It was then predominantly
replaced by state 3, which started with amostly flat and strongly biased
PMF (leading to a lower reward rate due to the bias correction) but
improved considerably over the next few sessions, as can be seen in
the evolving PMF (with darker colors showing later sessions). It seem-
ingly considered only sensory information from the left side when
makingits choice, becomingincreasingly random when that side was
uninformative. The random behavior was doubly beneficial, as the
animalwould sometimes have been correct and also got foiled less by
thebias-correction protocol. State 3was accompanied by state 4, which
described the behavior at the ends of the next few sessions (and later
also at the ends of sessions 14 and 15). Puzzlingly, this state had agood
PMF onboth sides and a higher reward rate than state 3, but although
thisbetter state was available, the animal seemed incapable or unwill-
ing to use it for the majority of a session.

The last major step in learning appeared abruptly as state 6, with
good performance onbothsides (albeit differently from state 4). Along
with state 6, we observed the introduction of state 7, which captured a
strong but transient decline inbehavioral quality. Finally, state 8 repre-
sented another notable change in behavior, as performance on 100%
contrasts increased abruptly enough to warrant a new state, allowing
the mouse to conclude this part of training.

Various aspects of our model cannot be reproduced by existing
treatments. The Psytrack model of the study discussed in ref. 28 can fit
incremental changes in behavioral characteristics; however, because
it lacks a concept of state, it does not natively support the identifica-
tion of recurring behavioral patterns. We find that many states occur,
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Fig. 2| diHMM fit to mouse KS014. The topmost row shows the overall
performance during the session, as proportion correct, and the current stage
of learning as the background color (we elaborate on learning stages later in the
text). Vertical lines with shaded circles at the top indicate the sessions during
which new contrasts were introduced. The remaining rows show the prevalent
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behavioral states (label to the right) ordered by appearance, indicating which
proportion of trials they explained during each session. To the far right of every
state, we show its PMFs across time, ignoring the contribution from the history of
previous choices. The saturation of the colors of the states indicates successive
appearance and matches the PMF plots.

then disappear, before reoccurring in a later session, such as states 3
and 6 in the animal shown in Fig. 2. This re-emergence of previously
used strategiesis animportant feature of learning. Similarly, the static
generalized linear model (GLM)-HMM described in ref. 21, which is
aimed at asymptotic behavior, does not determine the number of states
automatically. This implies that model selection is required for each
individualanimal, which the relatively small number of data points can
make challenging. Furthermore, inthe GLM-HMM, states cannot adapt
their PMFs, which is a second important feature of learning. Without
this, the GLM-HMM would tend to split states when behavior changes
gradually but sufficiently as to elude a single set of weights.

Our model also provides a fine-grained view of the use of behav-
ioral states within a session. Although the diHMM provides a full pos-
terior over the states for each trial, this is not directly useful due to
the technicalities of the sampling procedure. We therefore processed
the sample chains to estimate how much a trial belonged to a state
(Methods). We show an excerpt of this, for session12 of mouse KS014,
inFig. 3. This shows two clear transitions between states. The reasons
for the animal to have made such atransition are probably multifaceted
and may have been both internal (for example, insights or motivational
fluctuations®) and external (for example, a number of low contrast,
perchance unrewarded trials demotivating the animal). We do not
model these reasons and, instead, only describe observed changes.

The within-session fit shows that the model can detect temporary
yet strong deviations in behavior. State 7 only explained a couple of
dozentrialsintwo sessions, but represented extremely biased behavior
(comparable, but flipped relative to the earlier state 2, albeit lasting
for many fewer trials). We speculate that state 7 arose from a form of
inattentionbecause the animal had previously shownitself capable of
performing appropriately. This change in behavior is directly evident
inthe response patterns of the animal.

We can also capture subtler differences in behavior. The model
used different states to explain behavior before and after state 7,
although performance appeared equally good. However, the model
identified different error rates on easy contrasts for the two states,
andthis canbefoundinthe choices—state 6 was associated with more
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Fig. 3| Excerpt of state assignments in session 12 from mouse KS014, also
showninFig. 2. The left y axis serves as a scale for how connected a trial is to
the other trials of that state (see Methods for details). The right y axis shows the
contrast. The dot color indicates the animal’'s response. One can see how the
drasticand sudden change in the response patterns, rightwards (red) answers
for leftwards (negative) contrasts, from trial -330 to ~380 was detected by the
model with a transition to state 7. The PMFs of states 4 and 6 looked similar but
did, in fact, represent significantly higher error rates on the right and left sides,
respectively. These mistakes are highlighted with arrows.

incorrect responses to contrasts on the left side, whereas in state 4,
performance on leftwards contrasts was good, but there were frequent
lapses on rightwards contrasts (comparing two logistic regression
models—one using contrast and state 4 (assigned to n =391 trials) or
6 information (assigned ton =331 trials) to predictresponses, and the
other a nested model that only uses contrast (for the total of n =722
trials)—the state-split model is significantly better, as determined
by a likelihood-ratio test with P<0.0006 (D =14.96, df = 2), with an
effect size, as measured by the McFadden pseudo-R?, of 0.025; Fig. 3,
responses marked by arrows).

Fits across the population
The threefold progression we observed throughout learning in Fig. 2—
fromflat PMFs, to ‘one-sided’ behavior, togenerally good performance—is
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Fig. 4| Summary of the PMFs associated with the different types. a-e, The

first PMF of each state in each animal (representing response characteristics
after anotable discontinuity in behavior) was collected. Each subplot shows a
specific type—type lin green (a); type 2 in blue, further split by whether the PMF
isleft-biased (b), right-biased (c) or symmetric (d); and type 3 inred (e). The thick

lines indicate the overall mean over PMFs of the type, which shows representative
behavior of that type. The shaded regions show the range in which 95% of the
PMFs fell (computed separately for each contrast level). The thin lines show
samples of individual PMFs of these types. ‘n’ indicates how many PMFs of each
type were present across the entire population.
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Fig. 5| Proportions of sessions it took each mouse to reach the next major
step in training, as defined by the three stages. Each individual is represented
asacircle on the simplex (the larger the proportion of sessions within a specific
stage, the closer the dot for that animal is to that corner of the simplex). Simplex
corners are identified by example PMFs of the stage type. The marker area
indicates the total number of sessions (min, 5; max, 75). The magenta circle

marks the average proportion, and its size indicates the mean number of sessions
(whichwas 24.4). See Supplementary Fig. 1for alinear version of this plot. The
histogram on the right shows the distribution over the number of states used by
the model per mouse. The histogram on the left shows the distribution over the
number of training sessions.

typical for the population of mice we fitted. To define this more objec-
tively, we clustered the statesinto these three types based on their reward
rate on easy trials (see ‘Psychometric type classification’ section for
details). Theboundary betweentypesland2isata60%rewardrate,and
theboundary betweentypes2and 3is ata78%reward rate. We show an
overview and examples of the different types in Fig. 4.

In addition to the state types, we define the stage at which an
animalis on any given session as the highest type it has so far used for
the majority of trials of any session up to this point. For instance, if up

to session n -1, an animal only used type 1 states or type 2 states for
fewer than 50% of trials, then it would be in stage 1 for those sessions.
If, on session n, it then used type 2 states for more than 50% of trials,
it would switch to stage 2 on that session. Because the state types
delineate different aspects of task understanding, the stages allow us
to determine how many sessions the animals stayed at a certain level
of understanding. While the progression through state types was not
monotonic (for example, session 11 of Fig. 2), the stage classification
is, by definition, monotonically increasing.
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Fig. 6 | Evolution of the weights of states on average, through slow and sudden
changes. Error barsindicate +1s.e.m. (lines are slightly offset along the x axis for
visibility). Subplots titled by a type represent the weight changes from the first
appearance of a state of this type to its last, so only showing state-internal slow
changes (and only including states that were present between 5 and 15 sessions,
as extremes would skew these averages). Subplots with a title indicating a
transition from one type to another show how much each weight of the new state
differed from the weights of the closest previously existing state and are based
exclusively on the states that first brought the mouse into a new stage. That is, for
‘type1>2’, we only took into account the first type 2 state exhibited by the mouse

and only when that state was type 2 fromits inception. For instance, for mouse
KSO014, this was state 4, which started as type 2 before using the slow process to
becometype 3. Colored diamond markers on the leftmost and rightmost plots
indicate the average value of the weights of the very first state of each mouse and
of the dominant state on the last session, respectively. To prevent biases from
canceling out across the population, we split the bias weights into the following
two groups: starting out below 0 (bias left) or starting out above O (bias right).
While contrast sensitivities increased both through fast and slow changes, it is
noticeable that biases stayed almost constant throughout the lifetime of a state
on average, but changed more noticeably through sudden transitions.

Stage1consisted of states with flat PMFs of various biases, gener-
ally ignoring the contrast location. Stage 2 almost always involved
asymmetric states, responding well to one side of the screen, but close
to uniformguessing for the other (PMFs assigned to Fig. 4b,c account
for86%ofthoseinstage2; see ‘Psychometric type classification’ section
for details). Only rarely were intermediate PMFs nearly equally good
onbothsides (the 14% in Fig. 4d). These rare cases did behave like the
other type 2 statesin terms of their time of appearance during training
aswell, rather than type 3. Finally, in stage 3, the animals started appar-
ently paying attention to both sides. Generally, it took some further
refinement of initial type 3 states, through the reduction of errors on
easy trialson either side, to master this stage of training and progress
to the next phase of shaping.

The three stages segment the learning process. We can ana-
lyze the proportion of training time the animals spent in the differ-
ent stages by showing these proportions on a simplex (Fig. 5 and
Supplementary Fig. 1, linear representation). The large majority of
animals spent some time in each of the stages (that is, only a few mice
areassigned to the edges of the simplex). Most animals spent the long-
est time in stage 3—going from moderately competent performance
to passing the stringent training criteria. No fundamental change in
understanding was necessary for this, unlike the changes from stage 1
to2or2to3(wherethe animal had presumably tolearnto pay attention
to the Gabor patch on one or bothsides of the screen). However, reach-
ingtherequired accuracy seemed difficult, even once the principles of
the task were understood (possibly due to the smallincrease in reward
rate afforded by the extraaccuracy). Some of the longest trajectories
(the largest circles) were associated with especially many sessions in
stage 3, but overall the average fractional occupation was remarkably
consistent across training lengths (the mean relative occupancy for
stagel,2and3, respectively, were (0.24,0.17,0.59) and (0.21, 0.14, 0.65)
for the shorter and longer halves of amedian split on the total number
oftraining sessions). Stage 2 consistently lasted for the fewest sessions,
implying that the mice managed to pay attention to bothsides not too
long after starting to pay attention to one side.

Connected to this is the question of how slow and fast changes
characterize behavior. We analyzed gradual changes within a state
by comparing its PMF weights on its first and last appearances. We
analyzed new state introductions by comparing their PMF weights to
those of the closest previous state, as determined by the Wasserstein
metricontheir resulting PMFs (ignoring the perseverative weight). To
highlight the changes, we focused on states that brought the animal
into a new stage. These weight evolutions, split by type, are shown in
Fig. 6. Asthemaindriver of performance, contrast sensitivities reliably
increased both over the lifetime of a state and when new states were
introduced. Surprisingly, however, both the bias and perseverative
weights were stable within a state. This was markedly different for
the fast process—the changes through this were significantly larger
(Supplementary Figs. 12 and 13; one-sided Mann-Whitney U test on
absolute weight changes, two biases, two fast change points, three slow
change processes; the fast process had significantly larger changes
for all 12 comparisons at a 0.05 significance level, after applying the
Benjamini-Hochberg procedure to control the false discovery rate,
with effect sizes ranging from 0.43 to 0.94, quantified as standardized
mean difference, using the fast change s.d.). We also see that the per-
severation weight had asmall but consistent role throughout learning
(althoughitsrelative influence waned as the sensitivities grew).

Theintroduction of new states signifies notable changesinbehav-
ior, so by studying the patterns of their occurrences, we gaininsight into
whenbehavior was volatile or when substantial progress was made. The
histogramsin Fig. 7 show when new states first appeared across normal-
ized training and session times. Inlater sessions, gradually fewer states
wereintroduced, indicating that behavior saw fewer drastic changes as
training progressed. We noted earlier that animals spent most of their
time in stage 3, that is, perfecting their behavior, and we can now con-
clude that gradual improvements had an important role in this, more
so than sudden marked changes. The pattern of introductions within
sessionsis even more striking—the majority of states wereintroduced at
the very start of a session. This resonates with previous findings about
change points in behavior occurring at session boundaries®.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-025-02130-x

120 M Type1

H Type2
100 M Type 3
80

60

Number of states

40

20

o] 0.25
Training time at appearance

0.5 0.75

Fig. 7 | Histograms of all state introductions. The first state of every animal
(whichnecessarily occurred on the first trial of the first session) was excluded.
State introductions are shown across all of the training sessions (left) and within
sessions (right). We color by state type (green, blue and red for types1,2and 3,
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respectively) and normalize the entire length of training of an animal, as well as
allindividual sessions, onto the range between 0 and 1 for comparison purposes.
The inset on the right plot shows the bar of the first time bin uninterrupted.

Interindividual differences and variability. So far, we have high-
lighted general patterns duringlearning, but perhaps even more salient
than these similarities was the wide-ranging variability across animals.
Such differences are already visible in many of the plots above. Biases
intypelstatesspannedtheentirerange of possible response patterns.
Similarly, type 2 PMFs appeared to be randomly biased toward one side
or the other, or, rarely, symmetric. We were particularly surprised to
find no regularity between type 1 and type 2 biases. Of the 56 mice in
which type 2 onset occurred suddenly, 31 had expressed the same direc-
tion of bias (average choice fromthe PMF being more than 5% away from
50%) as the new type 2 statein any previous type 1state, whereas 25had
not (two-sided binomial test for whether the proportion of previously
expressed biases differs from 0.5 gives P= 0.504). Thus, we were unable
to predict future biases of the animal from its stage 1 biases.

The number of sessions mice required to learn varied greatly,
spanning an order of magnitude. Surprisingly, many animals with
alarge number of sessions were fitted by a small number of states,
which changed considerably via the slow process, as exemplified in
Extended Data Fig.1(notably, our recovery analyses indicate that the
model can cope effectively with long training trajectories, as described
inMethods). We revisit thisissue in the ‘Discussion’.

The number of sessions spentin the different stages was similarly
highly variable. To gain insight into the factors underlying the learn-
ing steps between the stages, we analyzed the correlations between
the number of sessions spent in them. The simplex plot does not
strongly indicate any patterns. We quantify this as follows: duration
of stage 1to stage 2—Pearson’s r = 0.21, P= 0.015; stage 1 to stage 3—
Pearson’s r=0.04, P=0.685; stage 2 to stage 3—Pearson’s r = 0.14,
P=0.095 (n=134 mice). Notably, the main chunks of training time,
stages1and 3, show no correlation whatsoever. Aspeedy understand-
ing of the basic contingency of the task, therefore, did not tend to go
along with the ability (or will) to perfect this behavior quickly, sug-
gesting that they required different competencies. The strongest
correlation exists between stages 1and 2, which makes sense insofar
as they were both concerned with discovering how to make use of the
stimulusinformation.

Beyond the training sessions analyzed here, the mice underwenta
further phase (‘biased block training’,in which left or right stimuli domi-
nated inblocks 0f20-100 trials). Consistent with our other results, the
length of this phase also turned out not to positively correlate with the
total prebias training duration, nor with any of the stage durations. At
most, there was anegative correlation between the overall bias training
time and the stage 3 duration (see Supplementary Results for details).

Discussion

We presented a highly flexible model that describes the stages of learn-
ing fromthe very first day an animalinteracts with a task untilitbecomes
anexpert. Using it on the shaping sessions of the IBL decision-making
task, we showcased a number of useful capabilities of this approach.
It allowed us to distinguish fast, abrupt transitions in behavior, and
slower, gradual ones. Learning on this task decomposed into the fol-
lowing three distinct stages, through which almost all animals went:
initial, undifferentiated and often biased behavior; partial, one-sided
understanding of task contingencies; and, finally, full understanding
of the task. While these broad-stroke characteristics were consist-
ent across mice, and indeed resonate with recent results from other
tasks*?*, the details of behavior in these stages differed considerably
across the population. Similarly, the way they progressed through
these stages differed widely in both its duration and the composition
of the sudden and gradual steps.

We found only a weak correlation between the time it took indi-
vidual mice to progress through some of the behavioral stages, sug-
gesting that they had to draw upon largely different skills to learn the
requirements of the task. Similarly, animals expressed varying, largely
uncorrelated, biases across the stages of learning. They might therefore
have different sources—in stage 1, when the mice paid no attention to
the stimulus, biases might be motoric; instage 2, they could have been
anexpression of the side thatindividual mice happened to notice first
asbeinginformative;instage 3, they might have stemmed from differ-
encesinsensory acuity. Beyond theinitial training considered here, the
duration of the subsequent biased block training of the animals did
not exhibit positive correlations to the training phase durations (as
elaborated in Supplementary Results). This again shows that learning
was influenced by a large number of factors in our setting.

We originally expected that mice who took many sessions to train
would be characterized by many states. However, although recovery
analyses show that the model can cope effectively with long trajecto-
ries, thiswas not always the case. Instead, we often saw that few states
took a long way via the slow process, from uninformed to proficient
(Extended Data Fig. 1). It will be important to assess the underlying
nature of these states and their progression by tracking neural data
through the course of learning.

Itisimportant to note that our model does not requireaslarge a
dataset aswe used. Individuals were fitted by themselves, the model
proved flexible enough to accommodate considerably different num-
bers of training sessions, and our cross-validation indicates that the
fitsare not critically sensitive to hyperparameter selection, the only
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part which made use of all subjects combined. Nevertheless, our mod-
eling approach does have a number of limitations. First, the setting
of'the slow change variance parameter, which determined how much
thebehavior of astate could change from one session to the next, has
acritical role in steering the trade-off between introducing a new
state versus adapting an existing one. We optimized this parameter
in terms of cross-validation performance for the entire population
(Methods). However, the magnitude of slow changes may depend on
theindividual or vary across training time, and thus, amore differen-
tiated treatment might be appropriate. Furthermore, slow changes
may also occur within a session”®, which could be incorporated into
the model by adding additional time points at which weights can
change. This might well be necessary to apply our method usefully to
the sort of more rapid, continuous changes that occur withinasingle
session. Another desirable extension would be to allow the duration
distributions to change over sessions. As training progresses, an
animal might, for instance, be able to use a highly performant state
for longer. Similarly, adynamic transition matrix and dynamic initial
state distribution might better capture the evolution of state usage
across training.

The model may be extended by making the states predict addi-
tional observations, as binary choice behavior may limit the power to
distinguishbetween behavioral modes. One obvious possibility is the
reaction times of the animal’s choices; in principle, this would only
require adding a suitable distribution to produce times for each state
(for example, from a drift diffusion decision-making process*~°). It
would likely be necessary to make the distributions dynamic, as the
reaction timesimprove with training. Other possibilities include pupil
dilation or even body posture®.

Previous work usingan HMM-based approach discovered demoti-
vated states in behavior during the first 90 unbiased trials per session in
the subsequentbiased block training®. The prevalence of sizable blocks
of trials during which the animal performs at adecreased level will, if left
unaccounted for, lead to confounded estimates of model parameters
and aflawed understanding of the animal’s current skill development
stage, making it anintegral component of agood behavioral model of
this task. We also find such states, characterized by reduced sensitivity
tothe contrast feature of atleast one side, and astrong bias inextreme
cases, leading to higher-than-normal lapse rates on strong contrasts.
However, these were not as pervasive as might have been expected
fromref. 21. For us, a majority of sessions were dominated by a single
state. Themodel sometimes acknowledged the dip in performance of
the animals at the ends of sessions for tens of trials with a separate state
(as shown in Fig. 2 on multiple sessions). We analyze aspects of these
trialsin ‘Posterior predictive checks’. However, frequently, we just see
adecreaseinthe prevalence of all sufficiently represented states. The
main source of behavioral variability in our data came from learning
and other large jumps in psychometric space; therefore, the model
used its capacity to capture these.

Besides task acquisition, our approach to capturing behavioral
evolution, which has conceptual relations to those used in the animal
conditioning®*, structure learning*® and motor learning®* literatures,
should be well suited to model other progressive changes, such as
those occurring during ageing*. Furthermore, our framework can be
flexibly adapted to other cases of long-run learning. For instance, it is
possible to tune the model to capture minute changes within sessions
rather than broad-stroke states across sessions, as here, by adjust-
ing the propensity to infer new states for small changes in behavior.
Equally, the modular resampling procedure of the model allows it to be
adapted to different kinds of observations, for example, multinomial
or Gaussian, by simply swapping out the inference mechanism of this
component (although only some distributions are convenient for the
gradual dynamics). We therefore hope that the tool we developed here
will enable a wide range of researchers to study behavioral develop-
mentin asystematic and revealing manner.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41593-025-02130-x.
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Methods

In this section, the data source is described briefly, followed by a
detailed explanation of the infinite hidden semi-Markov model. Infer-
ence for the logistic regression observation distributions is then cov-
ered, withafocusontheresampling steps. Together, these components
make up the full diHMM. The aggregation of generated samplesis then
explained, addressing challenges such as label switching and multi-
modality to define clear states. The process for assigning states and
their PMFs to the three types is described in ‘Psychometric type clas-
sification’section. Finally, validation analyses are presented, including
cross-validation for parameter and prior selection, model ablations,
posterior predictive checks, and recovery of generative models.

Ethics statement

All procedures and experiments were carried out in accordance with
the local laws and approval was obtained from the following the rel-
evantinstitutions: the Animal Welfare Ethical Review Body of Univer-
sity College London (P1DB285D8); the Institutional Animal Care and
Use Committees of Cold Spring Harbor Laboratory (1411117; 19.5),
Princeton University (1876-20) and University of California at Berkeley
(AUP-2016-06-8860-1); the University Animal Welfare Committee of
New York University (18-1502); the Portuguese Veterinary General
Board (0421/0000/0000/2016-2019).

Animals and behavioral data

The data we used were collected under the IBL protocol, as described
in detail in ref. 11 and its accompanying materials. The study subjects
were female and male C57BL6/) mice, aged 3-7 months, which were
cohoused whenever possible. Mice were kept in a12-h light/12-h dark
cycle and fed a diet containing 5-6% fat and 18-20% protein. No sta-
tistical methods were used to predetermine our sample size, but the
IBL represents alarge-scale approach to data collection and offers an
exceptionally large dataset of learning trajectories (covering more
individuals than the studies on learning by, for example, refs. 12,13).
There was noblinding of experimenters, as there were no experimental
groups. The stimulus sides and strengths that animals were presented
with were independently drawn for each session (although the debi-
asing protocol could affect these probabilities, and weaker contrasts
were introduced in a performance-dependent manner). When using
Pearson’s rto quantify correlation, the data distribution was assumed
to be normal, but this was not formally tested.

Infinite hidden semi-Markov model
We start by describing the diHMM, focusing on Bayesian inference
over itsrandomvariables. Following ref. 25, we use Gibbs sampling, an
MCMC algorithm, to realize an iterative resampling scheme over the
model components, including the PMFs of the hidden states and the
assignments of the individual trials onto those states. For this purpose,
all distributions are paired up with conjugate priors in this section, to
enablesimpleresampling steps. The posterior distribution is ultimately
represented by a collection of samples, with every component being
assigned an explicit value in each sample.

Wefirstdescribe all the relevant random variables, using the itera-
tor notation from Supplementary Table 1.

The technical backbone of an infinite HMM is a hierarchical Dir-
ichlet process. At the top of the hierarchy of this process is the proto-
typical transition vector

B ~ GEM(p), 2

where GEM (named after Griffiths, Engen and McCloskey) is a Dirichlet
process without abase distribution, a pure stick-breaking process that
samples a probability vector over infinitely many elements (which will
be states in our case). The concentration parameter y probabilisti-
cally determines the size of the individual sticks and, therefore, the

number of practically relevant states, with higher y encouraging more
states. We put a vague Gamma prior on y, making it, and thereby the
propensity to introduce new states, part of the inference as well, with
y ~Gamma(0.01, 0.01).

Atthenextlevel, we sample the transition vectors, aclassical HMM
component, I, of the individual states i. These are tied together via §,
whichis used as the base distribution for asecond Dirichlet process

m ~DP(a,B), i=12,..,L, 3

o ~ GEM(3). 4)

aisanother concentration parameter and determines how closely the
m;arerelated to B. Sampling theindividual state transition vectors from
this common source formalizes an overall kind of state popularity. The
higher a, the more like B is m;, Vi, and so the more the bias in the fre-
quency of state i/ in the particular sample B will be reflected in the
transitions fromito i/, and so the more popular i’ will be overall. We put
another vague Gamma prior on it, « - Gamma(0.01, 0.01). The initial
state distribution m,is drawn entirely separately, with aconcentration
parameter of 3 as a trade-off between allowing new states but not
encouraging the invention of new states at the start of sessions.

For ourinference scheme, we make use of the weak-limit approxi-
mation, which putsanupperlimit L =15onthe number of states, rather
than using the full infinite process. This simplifies the resampling
scheme, while still behaving similarly to an infinite HMM if L is suf-
ficiently large. Across the entire population, there were only three
mice with 12 states, after applying our hierarchical state clustering
procedure (‘Aggregation and interpretation of chains’ section); all
other mice used fewer states. Furthermore, the minimum fraction
of trials captured in states (as described further below) is 99.38%
(mean =99.97%), justifying the choice of L =15 (although a higher
limit would possibly allow us to capture motivational fluctuations
better). In particular, we still performinference over the realized state
complexity. In the weak-limit framework, equations (2)-(4) turninto
L-dimensional Dirichlet distributions

B ~ Dir(y/L,...y/L), (5)
n; ~ Dir(aBy,....aB;), i=12,..,L, (6)
1, ~ Dir(3/L,...,3/L). (7)

The transition structure within a session is given by

Zp,1 ~ Mo, (8)

zn,s ~ nz,,vs,l B (9)

where z, ;€ {1...L} is an indicator for the sth state within a session
n (which does not align with the trial number), and m, is the initial
state distribution.

Given the transition vectors, the workings of the hidden semi-
Markov model are fairly standard, except that the duration distribu-
tions are specified explicitly rather than being drawn from a geo-
metric distribution (as in a regular HMM). We therefore prohibit
self-transitions, which makes a data-augmentation scheme for
resampling necessary, as described in ref. 25. Nevertheless, asin a
standard HMM, durations are statistically independent of the target
state of transitions. Durations are drawn from a negative-binomial
distribution, with state-specific random variables, coming from their
own priors

ri~UG,6,7,...,704),

i=12,..,L, (10)
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pi ~ Beta(1,1), (11)

dn,s ~ NB(rzM ’pz,,vs)~ (12)

Note the difference between state names i, which hold for the entire
model, and the session-specific state counters s, which canbe used to
find the current state name via the indicator z, .. We chose a uniform
priorover alargerange of numbers for the possible values of r, to enable
long durations, but excluded small values for r (in particular, r = 1would
give the geometric distribution). Small values of rencourage transitions
after a very small number of trials, which would capture the statistics
ofthe presentation of left and right stimuli by the experimenter rather
than the longer-lasting states that we sought. Using cross-validation,
we ensured that enabling larger values of r did not benefit the fits.

States stay active and generate observations for as long as the
drawn durationindicates

k<s

ta(8) =Y. dps (13)

k=1
Xn,ty($)+1:t,(s)+d; = Zn,s (14)
P(yn,t =R) =ssig (fn,t X wx,,yt,n) > as)

where we defined ¢,(s) to return the trial on which the sth state of a
session n starts, which allows for the definition of x,,,, the state on any
giventrial t. We denote the logistic sigmoid function as sig. This takes
the dot product between the state weightsw, , (whichwe discussin the
nextsection) and the input features of the current trial f, ,and produces
the probability over the observationy, .. The binary response variable
y has O representing a leftward, and 1 a rightward choice. See also
Supplementary Fig. 2 for a visual summary of these variables.
We summarize this collection of variables as

Nt N T
© = {r.a B Mo, i pr Wil ),

where Nis the total number of sessions. The connections between these
variables are visualized in the form of a graphical model in
Supplementary Fig.3. Theresult ofinferenceisaset of samples {Oj}(:l.
Eachsampleisafullinstantiation of the listed random variables, which
we can treat as a posterior representation. Gibbs sampling works by
iteratively sampling each variable fromits distribution, given all other
variables in the model. After updating all variables, the result is one
new sample within the MCMC chain. Details on how to resample the
individual components canbe found in ref. 25.

Dynamic logistic regression prior and sampling

Gibbs sampling resamples each random variable conditioned on all
others. Thus, inference over the observation distributions of the states
isseparate from almost all therest of the model, only using the informa-
tion as to which trialis currently assigned to which state. We drop the
explicit state dependence i in w;, for this section, but it is important
to keep in mind that this sampling scheme is applied to every state
individually, with each state sbeinginfluenced only by trials for which
X, .= Ssinthecurrentsample. Weimplement slow changesin the charac-
teristics of the states by putting a Gaussian random walk prior on the
weights w,,, allowing for modest change across session boundaries,
parameterized by the variance o. We choose a diffuse initial distribu-
tion for the weights and use cross-validation to select the intersession
variance o= 0.04 (we performed cross-validation on a range of small
values, to limit the state adaptation process to small changes)

w; ~ N(0,8)), (16)

Wni1 ~ N(W,,, 0’)’ (17)
where / denotes the identity matrix. If a state has no trial assigned
to it in a particular session, its weights are held fixed during the
next transition, preventing states from morphing radically during a
prolonged absence.

Inference for the logistic regression weights is performed using
Pélya-Gamma data-augmentation, which allows for efficient inference
in settings with binomial likelihoods***, because it is not possible to
choose a conjugate prior. We review the relevant computations here;
forafulltreatment, we refer toref. 45. In the first step of the resampling
scheme, we sample pseudo-observations. This uses a P6lya-Gamma
distribution PG, by first sampling w, - PG(b,, ¢,,), where ¢, =f, x w,, is
the dot product of features and weights, and b,, is the total number of
times this exact instantiation of features was observed in session n.
However, the same state is associated with more than just one specific
instantiation of features (that is, including contrasts of different
strengths and sides and different response histories). To handle this,
we treat asingle session as multiple different time points, but prevent
weight changes between time points that belong to the same session.
In this way, the observations from different features within the same
sessionare effectively aggregated. Tocomplete the pseudo-observation
generation, we need x, = a, - b,/2, where a,is the number of rightward
answers observed for the current ¢, under consideration. Now z, = k,/w,
canbetreated as if they were drawn from N(¢,,, 1/w,,).

This data-augmentation serves the purpose of having the w, emit
observations with Gaussian noise (after combination with the features
f,intoy,). Because the prior on wis a Gaussian randomwalk, this places
inference in the well-studied realm of Kalman filtering. To resample
the w,, we use the forward filter backward sample algorithm***7, which
filters forward through all the observations using a Kalman filter,
then samples the sequence of w, backwards through time. A single
resampling step, therefore, consists of first drawing the P6lya-Gamma
variables to create pseudo-observations, then using them to sample
the w,using the forward filter backward sample algorithm.

We consider four features for the logistic regression—the contrast
ontheleftside, the contrastontheright side,anexponentially weighted
history over all previous choices and abias. Separating the features for
left and right contrast allows the sensitivities to the two sides to be
different. Because the notional contrast values do not match the psy-
chophysical difficulty of the contrasts (100% and 50% are both virtually
equally easy to perceive, not afactor of 2 apart), we apply a transforma-
tionto have abetter alignment. For this, we follow ref. 28 and use atanh
transformation, mapping the actual contrast conto theinput ¢ for our
logistic regression through ¢ = tanh(pc)/ tanh(p), where we follow their
recommendationandset P=5, which scales the steepness of the trans-
formation. This maps the contrasts (1, 0.5, 0.25, 0.125,0.0625, 0) onto
(1,0.987,0.848,0.555,0.302, 0).

The regressor for previous answers, enabling perseveration as
a strategy, proved to be beneficial for cross-validated performance.
Itis associated with the famous law of exercise***° and has also been
found to be exhibited by the mice in the asymptotic regime that arises
after the sessions that we are presently analyzing®. The same analy-
ses showed no general statistical support for a regressor sensitive
to the interaction between past choice and past reward, as would
be reflected, for instance, in win-stay, lose-shift behavior. We imple-
ment the perseveration regressor as an exponentially weighted sum
over all past trials. We found that weighting previous trials with an
exponentially decaying filter with a smoothing factor of 0.25 worked
best (although slightly different parameter settings have almost equal
cross-validation performance). Thus, we compute this feature on ses-
sionnand trial mas such

(18)

NI =

m-1
Z eXP(—0-25 k) (Zyn,m—k -1,
k=1
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where Z = Y7 exp(~0.25 k) is anormalization constant, such that the
entire exponential filteradds to1. Thetransformation 2 y — 1serves to
encoderesponsesas-land1, forthe purpose of having the persevera-
tive feature sway the current response appropriately. Therefore, this
feature reaches its maximal value of 1if all previous responses were
rightward and -1if they were all leftward, putting it on the same scale
asthe other features. Timeout trials, where the animal did not respond
before 60 s had passed, while skipped for the logistic regression of
responses, are taken into account for the previous answer regressor,
encoded as 0.

Aggregation and interpretation of chains

We generally generated 48,000 samples from each of 16 chains (with
different starting points), discarding the first 4,000 as burn-in. We
assessed convergence of the chains using the classical measure R*° and
generated more samples by continuing each chain if necessary
(although not all animals ever reached a sufficiently low R score, we
excluded 12 animals for this reason). R compares intrachain and inter-
chainvariability of bespoke, state-independent features of the chains.
Todetectdifferencesinthe variances of the chains and other problems,
which Ris known to miss, we also used folded-R and rank-normalized-R
!, Wereduced the memory cost by thinning the chain, using only every
25thsample (we did this purely for memory reasons, not because it is
necessary for MCMC algorithms™). For afirst pass, we sought to discard
chains that differed substantially from other chains in the explored
region in parameter space, either because they never reached the
relevant parts of it or because they spent disproportionate amounts
oftimeinsomemodes over others. Thisisaknown problem for MCMC
algorithms inmultimodal environments and can be mitigated by taking
nonmixed chains and combining them via stacking™. However, because
our goal here is not prediction, we still want to focus on finding and
visualizing the most important modes of the posterior, which we did
by combining the (possibly not perfectly mixed) chains, and consider-
ing the regions of probability space in which they collectively spent
the most time. Given the slow transitions between different modes, we
also did not split our individual MCMC chains when computing R, as
the two halves of the chains were often too different.

Asscalars underlying R, we used the concentration parameters a
and y, as they are independent of states. We also included general
properties of the fit—the number of trials assigned to the state with the
most trials, the second-most trials and the overall numbers of states
with more than 20% and more than 10% of trials assigned to them (we
chose multiple cutoffs to gain information about the fit at different
levels of resolution). By greedily discarding the chains thatincrease R
the most, wereduced the number of chains under consideration from
16 to atleast 8. For this, we considered all features and all variants of R
(normal, folded, rank-normalized) at once, so we were minimizing the
maximum over all these Rs. We only further processed the chains when
R < 1.05,which is more conservative than some recommendations, but,
inlight of the strong multimodality, more lenient than the newest ones’".

However, it is still not trivial to extract information from the
remaining chains given the multimodality. There are two main sources
of multimodality, which are as follows: (1) genuine uncertainty in the
usage of states or the exact setup of therandom variables of the states,
and (2) mode equivalence with permuted labels (for example, statei=1
in the first chain might explain roughly the same set of trials as state
i=2inthesecond). Although the second source makes evaluating the
results more complicated, itisinfactjust the sampling scheme working
correctly, asthereis nothing special about the particular state labels—
solutions with permuted state labels are functionally equivalent. For
the same reason, even within a single chain, arelatively consistent set
of trials might be explained by one label for some part of the chain,
but by a different label in another. Indeed, we frequently observed
this kind of label switching, where one state completely took over the
trials of another within a few sampling steps. In the limit of infinitely

many samples, we can expect any trial to have a uniform distribution
over the state label assigned toit; the only important question is which
other trials were usually accounted for by the same state as the given
trial within suitably similar samples.

To formalize the necessary abstraction from direct state assign-
ments, we computed co-occupancy matrices C for each samplej. C'is
amatrix of size T x T, with Tbeing the total number of trials across all
sessions of a mouse, whose t, mth entry reports whether trials ¢t and
m (for convenience, dropping the additional session label) used the
same state in sample;

Clop =106 = Xp). (19)
We used these co-occupancy matrices as a basis for the following two
different processing steps: (1) at a coarser resolution across trials, we
applied dimensionality reduction to find posterior modes; (2) at full
resolution, we averaged C across similar samplesj to derive a matrix
that describes the mutual affiliation of trials, allowing us to overcome
the labeling issues. Both steps are reminiscent of representational
similarity analysis®, in that, instead of comparing two samples directly,
we compare state co-occurrence within the samples.

Inprinciple, to explore the posterior, we could have flattened each
Cinto a T? vector and applied principal components analysis (PCA).
However, there were too many trials per mouse (of the order 0of15,000)
todothisatfull resolution, so we binned the trials into 200 bins, ignor-
ing session boundaries, and then used the Wasserstein distance to
measure state co-occurrence between the bins. That is, we define
modified matrices ¥ as

L
Cl=21-Ipl-Ph ) 20)

i=1

where p[{i isthe proportion of trialsinbin ¢, whichis assigned to state
iin samplej. ¢/ reduces to C for bins comprising a single trial. We
then plotted individual samples in the first three dimensions of the
PCA space arising from flattened versions of €/, as shown in
Supplementary Fig. 4.

Indoingthis, we found that the posterior for anumber of animals
wanders itinerantly between different modes, reflecting true uncer-
tainty. These modes are distinct solutions and should not be blended.
Toisolate them, we performed Gaussian density estimation in the 3D
PCA spacetoidentify the onesthat were most prevalent, asthe regions
of highest estimated density. We used this clustering to select samples
J € g"thatwere sufficiently similar as to comprise anindividual mode
J". For now, we did this by hand; however, the process could be made
more formal by fitting a mixture of Gaussians to the posterior and then
selecting samples around the means of the Gaussians with sufficiently
large mixture weights. We selected at least 400 samples from amode
toformarepresentative collection.

Next, we sought to understand how trials within that mode were
co-assigned to states. To do this, we averaged the co-occurrences
= lglqzjegqcfand treated C" = 1 — Crasadistance matrix, where trials
were closeif they shared astate in most samplesin the mode. We then
performed hierarchical clustering on ¢", using as a cluster distance
d(v,v) = max(CZ[k],v[,]),k e v;l e v, which took as the distance between
clusters the maximum distance between any two trials in the clusters
vandv. Theresult of the hierarchical clustering was a tree on the indi-
vidualtrials; cutting this tree at acertain level leads to aspecific cluster-
ing. Thus, cutting at, say, 0.6 means that we only have clusters in which
every trial was explained by the same state in at least 40% (1 - 0.6) of
the samples. For our plots, we cut at 0.95, which empirically returned
good results. Although this meant that trials needed to use the same
stateinonly 5% of samples tobein one cluster, most trials were assigned
to the same state much more frequently (Supplementary Fig. 5). This
also shows a number of alternative clusterings from different
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thresholds, demonstrating that there is little change across a wide
range of thresholds—the 95% threshold leads to 8 states with 100% trial
coverage, an 80% cutoff leads to 9 states and 99.92% coverage, a 50%
cutoff gives 12 states with 98.77% coverage and, finally, a threshold at
20% gives 15 states and 95.27% coverage. We can thus see that low cri-
terialed to trialsbecoming unassigned and some states splitting apart,
which is why we chose arather high cutoff. A further verification that
the procedure and its threshold gave a faithful representation of the
collection of samples comes from comparing the overall solution
against individual solutions from single samples. Empirically, these
didindeed align. Our later recovery analyses also used this approach.

The states we show are therefore defined at heart by sets of trials.
To compute the PMFs of such aset, we first considered a single MCMC
sample and noted which statesit assigns to the trials within thisset on
asession-by-session basis (although eachindividual trial only had one
state assigned inasingle sample, for the whole set of trials, it usually will
notjust have beenasingle state, due to random fluctuations, but mostly
asingle state). We turned the psychometric weights of these states into
PMFs, over whichwe then averaged (in a weighted manner, considering
how often any state occurred in the set of trials). For a single sample,
thisresulted in an average PMF of that state for each session. This then
got averaged across samples within a cluster (evenly over all selected
samples of amode) to obtain the ultimate PMFs of this state.

Todetermine how closely asingle trialis connected toits assigned
state, we averaged the proportions of samples in which it was in the
samestate as all the other trials assigned to this state. That is, for agiven
trial¢, we took a row of the consistency matrix €} and considered only
the entries corresponding to other trials within the state under con-
sideration. We then averaged over those entries, yielding the average
proportion of co-assignment. We think of this as a proxy of the posterior
over which state a trial is assigned to, and we show it in Fig. 3.

Psychometric type classification

We observed by eye that the PMFs that the model found for the behav-
ioral states had atendency to fallinto one of the following three charac-
teristic classes: flat (type 1), half-tuned (type 2) and fully tuned (type 3).
However, theboundaries between the classes were blurry, sowe sought
anobjective distinction, recognizingits inevitable arbitrariness. Note
that a state may change its type through the slow process; it is thus a
session-dependent classification.

The measure we used in the main paper is the mean reward rate
implied by the PMF on easy trials (100% and 50%), ignoring the effects
of perseveration (and the debiasing protocol). We chose the reward
rate because this tends to grow as the animals proceed from ignorance
to competence. We chose to assess only the easy trials because early
PMFs were not defined on the lower contrasts (because these stimuli
were not presented), and including more difficult contrasts can lead
to lower reward rates for more broadly defined PMFs, even when they
arebetter on easy contrasts. Supplementary Fig. 6 shows the distribu-
tion of such reward rates across all states. Itis apparent that thereis a
rather clear grouping of PMFs with reward rates below 0.6, defining
type 1. Theboundary between types 2 and 3 is somewhat less evident,
implying that edge cases will be hard to assign. The threshold reward
rate of 0.78 served reasonably well, as evidenced in Fig. 4. We further
split type 2 PMFs on whether they were left-biased, right-biased or
symmetric. We considered a PMF symmetric if its error rate on 100%
leftwards contrasts was within 10 percentage points of the error rate
on100% rightwards contrasts.

Cross-validation and ablations

Our model contains a number of free parameters that we set using a
cross-validation procedure. We used this most notably for the variance
o of the normal distribution over how much the logistic weights of a
state can change from session to session and the decay constant of the
exponential filter over previous actions, which are fixed parameters

that are not inferred during the inference procedure. This inference
procedure is itself guided by priors, which we set to be vague, exert-
ing minimal influence upon the ultimate posterior. However, their
precise setting can nevertheless also be evaluated via cross-validation.
This applies to the two gamma distributions over the concentration
parameters a and y and the priors over the parameters of the states’
duration distributions. Cross-validation also allowed us to verify that
our usage of the weak-limit L =15 did not hurt our model fits, and that
including a win-stay lose-switch feature, indicating which side was or
would have been rewarded on the previous trial, was not beneficial in
capturing animal choices during learning.

We used a tenfold cross-validation scheme, randomly masking
10% of trials on each session. Because we were not interested in the
details of the fits, we only ran one chain of 10,000 samples for each
parameter combination and cross-validation fold we wanted to test
and evaluated the quality of the fit through the summed negative
log-likelihood on the last 4,000 samples on the held-out trials, which
was sufficient for a stable estimation of the held-out log-likelihood.
Despite this time-saving strategy, there were too many combinations
of parameters to check exhaustively, so we used a manual heuristic
search over promising combinations, finding an optimal setting and
verifying that any relevant deviations fromit only lowered the negative
log-likelihood (Supplementary Fig. 7, left). Asanother measure to save
computation, we only evaluated two folds of each animal for each
parameter setting, but because we evaluated our model on 154 mice
(this was before exclusions due to missing sessions or too low R), we
still evaluated on a substantial number of foldsin total.

Wetested the perseveration decay constant over the set of values
(0.15,0.2,0.25, 0.3, 0.35, 0.4), the variance o over the set (0.01, 0.02,
0.03,0.04,0.06,0.12,0.24), representing the small range that we found
desirablefora consistent stateidentity, as well as some larger values to
ensure that they did not outperformsmaller variances. The searchalso
includedalarger support for the r parameter of the duration distribu-
tion (running from r=2 to r=905) and different settings of the a and
y concentration priors, which were independently varied over the set
((0.1,0.1), (0.01, 0.01), (0.001,0.001)).

Many of the parameter configurations yielded comparably high
performance. Of note, the parameter setup closest to the selected
model simply allows higher rvaluesin the duration distribution, repre-
senting astrict extension of the model that, however, does notimprove
fit. When studying the correlations across two different parameter set-
tings, but within the same animal and the same cross-validation fold,
we found extremely strong correlations, with only slight offsets from
theidentity line and a small handful of outliers accounting for the dif-
ferences. This provided evidence that the fits were fundamentally the
same, and different mice did not significantly benefit from different
settings, allowing us to simply take the best among many good settings
and proceed withit for the population-wide fit. These settings were the
ones specified throughout the study—perseveration = 0.25, 0= 0.04,
r;~UG5,6,7,...,704) and botha and y ~ Gamma (0.01, 0.01).

Inadditionto finding the best parameters for our fit, we also used
thisapproachto ablate the mostimportant model components, verify-
ing that all aspects of the model were necessary to provide as good a
fit as possible within our framework (Supplementary Fig. 7, right). In
particular, we tested the best parameter setting we found, but did not
allow for change in weights between sessions (effectively removing
the slow process of the model), both with 3 states (thus emulating the
work described in ref. 21, although with duration distributions) and
with the usual upper bound of 15 states. Allowing for 15 states but no
slow process led to only somewhat worse performance than the full
model (Supplementary Fig. 7, right—‘15 states, no slow proc.), but did
soatthecostof significantly increasing the usage of short-lived states.
We tested this by considering how many states explained more than
x% of trials of an individual animal (which can be read directly from
the cross-validation samples, not requiring the sample aggregation
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procedure described previously). The full model makes more use of
highly prevalent states that explain more than 20% of trials—1.7 + 0.53
(mean *s.d.) per animal versus 1.07 + 0.67 of such states for a model
without the slow process (two-sided Mann-Whitney Utest, U= 21858.5,
P<1x107%, effect size =1.18 (standardized mean difference with s.d.
over full model state number), n =154 mice), but fewer overall states,
such as any that explain more than 2% of trials—5.16 + 1.62 versus
9.13 +2.14 (two-sided Mann-Whitney U test, U=87773.5,P<1x 1077,
effect size = 2.45, n =154 mice). Thus, while the removal of the slow
process can mostly be made up for by an increased reliance on new
states (for which our model has plenty of capacity), the slow process
benefits the fits by tying together highly similar trials across short
timescales, rather than arbitrarily separating them when behavior
gradually changes too much to be accommodated by a single state.

We alsoallowed only one state (including the slow process), remov-
ing the notion of multiple states from the fit (Supplementary Fig. 7,
right—1state’). Thismodel performed, perhaps surprisingly well, but
because asessionis usually dominated by asingle state, asingle adapt-
able state may perform somewhat well. We tested whether a win-stay
lose-switch (WSLS) feature, indicating which choice was or would
have been rewarded on the last trial, was beneficial, which it was not
(Supplementary Fig. 7, right—'Best + WSLS’), and whether the perse-
veration feature could be removed, which it could not (Iabeled ‘No
perseveration’). Finally, we also tested the improvement due to the
durationdistributions (whichreplaced theimplicit geometric duration
distribution of an HMM; Supplementary Fig. 7, right, ‘No duration (exp.
only)’). This test proved somewhat problematic within our framework,
asrestricting the model toimplement durations through the transition
matrix led many of the posteriors to settle on an unsatisfying solution.
In this solution, states were extremely strongly biased leftwards or
rightwards and rapidly alternated, depending on the choice of the
animal. Such a model has, of course, almost no predictive power on
held-out trials. This is seemingly a consequence of the hierarchical
nature of the transition matrix—if we often transition into a state (and
without duration distributions, we have a state transition after every
single trial, with most of them being self-transitions), it becomes gener-
ally attractive in the iHMM framework, encouraging transition distri-
butions that are much closer to uniform than one would expect for a
reasonable notion of temporally extended states. We thusimplemented
geometric distributions that prefer longer states by fixing r=1, but
biasing the prior over p. We performed another small cross-validation
sweep and present here the best model found in this way.

Posterior predictive checks

To identify any mismatches between our modeling assumptions and
actualbehavior, we performed posterior predictive checks using mul-
tiple test statistics. The goal of this analysis was to determine whether
responses generated solely from posterior samples reproduced the
behavioral trends observed in the actual data. We simulated behavior
for each session of an animal by taking each sample from our selected
posterior mode, initializing with the state that was the actual state
on the first trial for that sample and then generating responses. We
needed toinitialize with the true state, because the model uses astatic
initial state distribution m,, so arandominitializationwould lead to an
unstructured mix of proficient and inexperienced behavior. However,
after initializing the first state, the model ran completely indepen-
dently—we drew a duration from the duration distribution of that
state, using posterior parameters, randomly sampled a next state from
the transition matrix once a state ended and sampled responses from
the observation distribution of the current state, given the current
features. These features included the contrast that was presented on
thattrialand arecomputed perseveration feature based on the choices
of the current run of the simulation (so notably not the perseveration
feature based on the choices of the animal). This unguided generation
of behavior thus represents a very stringent test of the posterior fit.

We visualized the results by plotting actual behavior in relation to
the distribution created by simulating behavior three separate times
with each sample (because we use at least 400 samples from a mode,
this equates to >1,200 simulations). As metrics of interest, we chose
the percentage of correct choices in a session and the percentage of
rightward choices for each contrast. We plot the accuracy of a single
individual (the mouse of Fig. 2) in Supplementary Fig. 8a and the PMF
on the last session of that animal in Supplementary Fig. 8b. As we can
see here, behavior simulated from the posterior generally provides
bothatight as well as accurate estimate around the true behavior.

To summarize the relationship between true behavior and the
simulated distribution across the population, we calculated the per-
centiles of the empirical values within the simulated distribution,
visualized in Supplementary Fig. 8c,d.Inanideal case, the histograms
over these percentiles would be uniform, indicating that the posterior
provides an unbiased and calibrated estimate for the true behavior.
This is not quite true here—we can see that accuracy has a modest
tendency to be overestimated (that is, the true accuracy tends to
fall onto lower percentiles of the simulated distribution). As men-
tioned in the ‘Discussion’,behavior often degrades toward the end of
asession (almost by necessity, as it is one of the session termination
criteria), but this was not always acknowledged with a separate state
by the model, perhaps because behavior degrades in a gradual and
inconsistent manner across sessions. We suggest this as aninteresting
direction for a possible extension of our framework, by combining the
states with a mechanism for change on a shorter time scale, similar
tothework describedinref. 28. However, implementing thisinaway
that keeps states distinct and has themretain their identity over long
time periods seems challenging, in the face of motivational changes
that occur gradually but can change behavior quite notably on the
order of tens of trials. Note that the overestimation of accuracy also
occurs on sessions on which the model does ultimately include a
state that reflects a substantial reduction in performance. This hap-
pens because the model sometimes fails to appropriately transition
to this worse state (given that it is only a descriptive model with no
foresight of when asession ends). Thus, accuracy in free simulations
canbetoo great.

While the percentage of rightwards choices across contrasts forms
a seemingly uniform distribution, splitting the histogram over the
different contrasts reveals that there is a modeling assumption that
biases the estimates for the different contrasts somewhat, as shown
in Supplementary Fig. 8e. Most notably, for the 100% contrasts, the
modelunderestimates how accurate the animals are (by overestimat-
ing the % rightwards choices on leftwards contrasts and vice versa).
Note, however, that the insets for these contrasts show that the actual
deviation is very small. Somewhat more subtly, the opposite occurs
for the respective 50% contrasts. These deviations arise from the psy-
chophysical transform we borrowed fromrefs. 21,28, namely the tanh
transformation onthe raw contrast values. The100% and 50% contrasts
aremapped onto very similar values (1and 0.987, respectively), strongly
coupling the percentage of rightward choices for the two contrasts,
requiring them to take on almost the same value. This is intuitively
desirable—allowing a smoothing over the different contrast strengths
and reducing the number of parameters in our logistic regression
(using a general ‘leftwards sensitivity’, rather than having a separate
parameter for each contrast). While100% and 50% are very different in
terms of absolute value, they are both highly visible, meaning their dif-
ference fromapsychophysical perspective is rather minor®. Neverthe-
less, asit turns out, some mice can occasionally exhibit rather different
behavior onthe two contrasts (Supplementary Fig. 8e, insets), leading
toanunderestimation for the stronger contrast and an overestimation
on the weaker one.

The 0% contrast plot, on the other hand, exemplifies a posterior
predictive check without such reservations—thereis no noticeable bias,
and the posteriors appear correctly calibrated. The predictive checks

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-025-02130-x

thusserveasanimportant tool to study the limitations of our modeling
approach, highlighting that degrading behavior is not fully captured
by the model and that the smoothing over contrasts imposes some
structure onto the PMFs that biases the performance estimates. To
study further the effect these biases in the model have upon the fits, we
analyzed the magnitude of the biasimposed (Supplementary Fig. 16).
As we can see, most of the differences fall within a close range around
the posterior mean.

Asaproofof concept, we refitted the model with a different PMF
parameterization to see whether this could address the observed
issue. This alternative parameterization was inspired by another line
of work that uses neural networks to capture animal behavior on the
IBL task. Using this, we mapped the contrast strengths (1, 0.5, 0.25,
0.125,0.0625,0) onto (1,0.899,0.705, 0.416,0.207, 0) for the logistic
regression, whereas the tanh transformation mapped onto (1, 0.987,
0.848,0.555,0.302, 0). Theresults of repeating the posterior predic-
tive checks onarepresentative randomsample of mice (n = 84) using
this new parameterization are shown in Supplementary Fig. 9. This
reveals that the tension between the predictive distributions on100%
and 50% contrasts was mostly caused by the PMF parameterization,
rather than by the model itself. Because the fits under this new PMF
did not qualitatively differ from fits under the old parameteriza-
tion, we did not redo our analyses, but accepted this as evidence for
the suitability of the model and fitting procedure. The remaining
slight tension between the predictions on strong contrasts might
be caused by changes in the perceptual sensitivities of the animals
during learning, which is an interesting avenue to pursue in further
studies of learning.

Modelrecovery

We tested the model and our inference procedures by fitting to data
for which the ground truth was available. For this, we instantiated all
the random variables of the model to specific values and generated
responses fromit. This was performed for multiple different variable
settings to assess the accuracy of the fitting procedure in all relevant
regimes and using input data (thatis, contrast sequences) fromactual
training trajectories. The data generated this way were processed
exactly as those from the IBL mice.

We paid particular attention to assessing the strength of the
inductive biases of the inference procedure—particularly in terms of
the number of states it inferred (given that this could be potentially
unbounded, within our weak-limit approximation) and the degree of
change between sessions (because slow and fast state changes could
interact). We tested multiple settings in which all the data were actually
generated from a single state, to test whether the model would incor-
rectly split behavior into multiple states. In one setting, the psycho-
metric weights of the state stayed constant throughout all sessions.
In another, the weights gradually evolved from poor performance to
proficiency (at constant steps of a magnitude that corresponds to a
variance of 0.0311; the variance of the fitting procedure was fixed to
0.03). Both fits recovered their ground truth successfully, explaining
virtually all trials with a single state, as can be seen for the example of
the changing state in Supplementary Fig. 10. We also tried a variation
of the latter situation, in which the psychometric weights changed
in (proportionally smaller) steps on every single trial, rather than all
at once at a session boundary (as the model assumes). This, too, was
recovered by the model with only one state (which we consider the
best possible solution, given that the generative process was outside
the model class).

We also successfully recovered settings from 2 to 9 states,
with and without session-to-session variation on the weights, with
strongly varying trial proportions between the different states
(Supplementary Fig. 14) and of varying overall training lengths (par-
ticularly to test whether long training trajectories lead the model to
impose fewer states, making more use of the slow process), as seenin

Supplementary Fig.11. The model was also tested on asetting with com-
pletelyimplausible PMFs, but with the added difficulty of havingalarger
number of states active within each session (Supplementary Fig. 15).
This, too, was captured accurately. These successful recoveries suggest
that the model can uncover states that truly correlate with distinct
modes of animal behavior.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Please follow the instructions at https://int-brain-lab.github.io/
iblenv/notebooks_external/data_download.html to download the
data used in this article. Our public code contains a script to down-
load the dataset.

Code availability

The code used for this analysis, as well as installation instructions
for the necessary packages, can be found at https://github.com/
SebastianBruijns/diHMM.
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Extended Data Fig. 1| Model fit to amouse with a larger number of

sessions. Using the plotting conventions of Fig. 2, this depicts the states and
corresponding psychometric functions identified in a mouse that required

36 sessions to learn. Thisillustrates the counterintuitive phenomenon that long
training trajectories were sometimes fitted by the model using a small number

of states. Some of these states, particularly state 1in this example, underwent
substantial changes through the slow process, spanning the range of uninformed
to proficient behavior (note that the type labels to the right of the PMFs are
determined by the highest type reached by a state; thus, state 1is labeled as type 3
eventhoughitbeganastypel).
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Data analysis Our analysis code can be found at the repository linked below. We make use of Markov chain Monte-Carlo algorithms, from these packages:
pybasicbayes (original version='0.2.4", our version linked below)
pyhsmm (original version='0.1.6", our version linked below)
pypolyagamma (version='1.2.3")
Code availability:
The analysis code with installation instructions is deposited at https://github.com/SebastianBruijns/diHMM

This uses:

https://github.com/SebastianBruijns/sab_pybasichayes a modified version of https://github.com/mattjj/pybasicbayes
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regexp = re.compile(r'Subjects/\w*/((\w|-)+)/_ibl')
datasets = one.alyx.rest('datasets', 'list', tag='2023 Q4 Bruijns_et_al')

# extract subject names

subjects = [regexp.search(ds['file_records'][0]['relative_path']).group(1) for ds in datasets]
# reduce to list of unique names

subjects = list(set(subjects))

for subject in subjects:
trials = one.load_aggregate('subjects', subject, '_ibl_subjectTrials.table')
training = one.load_aggregate('subjects', subject, '_ibl_subjectTraining.table')
# save data
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Study description Mice were taught a perceptual decision-making task: On each trial, a patch of black bars was presented on a white background, on
either the right or left side of a screen. Mice used a wheel to indicate which side the contrast was on, for a water reward if correct. By
modulating the strength of the contrast, a trial could be made more or less difficult. Mice were only presented easy contrasts at the
start, more difficult contrasts were introduced as performance improved. This gave us a quantitative experimental study.
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Research sample We analysed 134 C57BL6/J mice aged 3-7 months obtained from Jackson Laboratory or Charles River. We used the publicly available




Research sample IBL dataset and included all subjects. We did not therefore determine the data collection ourselves, but relied on an existing,
exceptionally large data set. In particular, the number of individuals is larger than that used by the studies of e.g. Kastner et al. (2022)
or Akiti et al. (2022).

Sampling strategy Our sampling strategy was convenience/exhaustive. To our knowledge we used all mice which trained under the standard IBL
protocol without any manipulations, but we did not make entirely sure that none were missed. We did not specifically leave out any
appropriate mice, but we did exclude mice which had incomplete training trajectories (missing sessions for whatever reason).

Data collection Data was collected using the IBL rig (https://github.com/int-brain-lab/iblrig) setup, in particular mouse responses were recorded via
computer. All the details can be found in the paper describing the experiment setup: https://elifesciences.org/articles/63711.
Researchers were not blind to experimental condition, as there were no conditions. Researchers were effectively blind to the study
hypothesis, as hypotheses were formed during model construction, which was mostly after data collection had concluded.

Timing Samples were collected beginning on the 3rd of November 2019 and ending on the 8th of April 2022.
Data exclusions 12 subjects were excluded from the analysis because the R hat metric was too bad (above 1.05) on their chains, as described in the

paper. The R hat metric quantifies how much the chains vary from one another, and indicate poor convergence. We also excluded
mice with any missing training sessions.
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Non-participation We analysed mice which completed training, in that sense there were no dropouts.

Randomization There were no experimental groups.
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Laboratory animals C57BL6/J mice aged 3-7 months obtained from Jackson Laboratory or Charles River.
Wild animals Study did not involve wild animals.
Reporting on sex Sex was not considered in this study. We wanted to consider learning in general.

Field-collected samples  Study did not involve samples collected from the field.

Ethics oversight All procedures and experiments were carried out in accordance with the
local laws and following approval by the relevant institutions: the Animal Welfare Ethical Review
Body of University College London [P1DB285D8]; the Institutional Animal Care and Use Committees
of Cold Spring Harbor Laboratory [1411117; 19.5], Princeton University [1876-20], and University of
California at Berkeley [AUP-2016-06-8860-1]; the University Animal Welfare Committee of New York
University [18-1502]; and the Portuguese Veterinary General Board [0421/0000/0000/2016-2019].

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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