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Autism is a pervasive condition broadly
afflicting perceptual, cognitive, social,
and motor function.

There are a large number of theories of
autism spectrum disorder (ASD), and
these span the gamut in terms of levels
of description: behavioral, algorithmic,
and neural instantiation.

Here we attempt to close the gap be-
tween different theories (causal inference,
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Autism impacts a wide range of behaviors and neural functions. As such, theo-
ries of autism spectrum disorder (ASD) are numerous and span different levels
of description, from neurocognitive to molecular. We propose how existent be-
havioral, computational, algorithmic, and neural accounts of ASD may relate to
one another. Specifically, we argue that ASDmay be cast as a disorder of causal
inference (computational level). This computation relies on marginalization,
which is thought to be subserved by divisive normalization (algorithmic level).
In turn, divisive normalization may be impaired by excitatory-to-inhibitory imbal-
ances (neural implementation level). We also discuss ASD within similar frame-
works, those of predictive coding and circular inference. Together, we hope to
motivate work unifying the different accounts of ASD.
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excitatory-to-inhibitory ratio balance,
and predictive coding) and levels of de-
scription.
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In need of a new kind of theory of ASD
ASD is a heterogeneous neurodevelopmental condition of unknown etiology. It impacts a wide
range of functions, from social and communicative faculties [1] tomotor behaviors [2] and sensory
processing [3]. Similarly, a wide range of genetic [4] and environmental [5] factors have been
linked to the disorder. As such, there are a great number of theories of ASD, and these are as di-
verse as the condition itself. Some emphasize psychological descriptions such asweak central
coherence (see Glossary) [6] and theory of mind [7], or focus on brainwide [8] or microcircuit [9]
connectivity patterns, and still others highlight particular neurotransmitters [10] or genetic muta-
tions [11–13]. Many of these theories are well supported by empirical results; yet, we do not un-
derstand the root cause, or causes, of ASD.

We argue that a new kind of theory is needed, one that bridges across levels of description. Com-
putational models are well suited to this task because they allow complex phenomena to be dis-
tilled into a set of precisely defined equations and parameters. Furthermore, the latter may then be
searched for in neural activity. In turn, in recent years, we have seen a flurry of formal proposals
[14–20], most commonly within the framework of the Bayesian brain and addressing mecha-
nisms of perception. A mathematical formulation, however, is only the first step. Next, we need
to specify how neurons, synapses, proteins, and genes may support this computation, both in
neurotypical brains and in those of individuals with ASD. Here, we sketch a working hypothesis,
starting from computation and bridging to algorithm and neural instantiation. Although many of
the details are still missing, this highlights the need for a cross-disciplinary framework guiding
new, theoretically motivated experiments.

Behavior and computation: causal inference
ASD phenotypes are varied and impact a wide range of functions. In perception, for instance,
anomalies have been reported across vision [21], audition [22], touch [23], and olfaction [24],
among other sensory modalities. Likewise, reports have highlighted differences in both low-
level encoding [25] and the higher-level interpretation of sensory evidence, or semantic
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Figure 1. Bridging across computational, algorithmic, and neural accounts of autism spectrumdisorder (ASD). Top
causal inference. A generativemodel for the example where sounds and sights pertain to a single source (C = 1) or multiple sources
(C = 2). Left panel: Visual (Xv, yellow) and auditory (XA, blue) signals pertain to a single source (i.e., green = yellow + blue). Right panel
Visual (Xv, yellow) and auditory (XA, blue) signals pertain to separate sources. Observers first infer the likely causal structure (see
Equation I in Box 1) and then weigh these interpretations in perceiving (see Equations II–IV in Box 1). Middle: divisive normalization
Responses of single neurons (output) are divided by the sum of activity from a normalization pool. Bottom: predictive coding. In cor-
tical circuits, there are likely at least two flavors of prediction error neurons: those indicating the unexpected presence (type 1) or ab-
sence (type 2) of a signal. This implies a critical role for inhibitory interneurons (orange) in the schematized circuit. Furthermore, a
gating or modulatory mechanism dictates when errors might indicate a true change in the environment or not. We propose tha
thismechanismmay be driven by causal inference, attributing deviations from an expectation to either ‘noise’ (expected fluctuations
or a true change in the environment (unexpected fluctuations), and instantiated via divisive normalization.
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Glossary
Bayesian brain: the assumption that
the brain can be modeled as
performing Bayesian computations and
thus inverting generative models via
Bayes’ rule and representing information
in probabilistic terms.
Divisive normalization: neural
operation wherein responses are the
ratio between an excitatory driven and a
normalization signal.
Dynamic range: within the context of
spiking activity, the range (defined over
the state space of the stimuli) over which
a change in stimuli will lead to a change
in neural activity.
Fano factor: variance-to-mean ratio of
spike counts, usually within a particular
time window. Used to measure the
variability of spike trains.
Gain control: mechanism that allows a
change in gain that multiplies or divides
the amplitude or strength of (neural)
responses to a given input.
Localization thresholds: minimal
detectable spatial separation between
cues, or between a cue and a reference
point (e.g., measured in degrees).
Magnetic resonance spectroscopy:
noninvasive technique allowing the
detection and quantification of tissue
metabolites.
Marginalization: mathematical term
referring to summing over all possible
values of one variable to determine the
‘marginal’ contribution of another.
Mixture priors: a prior distribution that
is a mixture of two or more probability
distributions.
p-common: the prior probability that
there is a single cause versus two
causes.
Probabilistic population codes:
encoding-decoding framework wherein
neural populations represent probability
distributions over the stimulus.
Saturation: within the context of
spiking activity, the level at which
neurons cannot increase their firing rate.
Surround suppression: the
phenomenon where the relative firing of
a neuron decreases when a stimulus is
enlarged (usually beyond the size of the
neuron’s receptive field).
Weak central coherence: a theory
suggesting that individuals with ASD fail
to see the big picture.
:
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understanding [26]. It follows that if there is a single computation that has gone awry in ASD, this
ought to be a canonical one – a modular computation that can be widely applied across behav-
ioral challenges, brain regions, and even animal species. In our opinion, a strong candidate for
such a computation is causal inference [27,28].

Causal inference is the ubiquitous and flexible process of attributing observations to (hidden)
cause(s) [28]. Some refer to this process as ‘structure learning’, the process of deducing which
hidden environmental structure may have generated observed signals. In perception, for exam-
ple, we do not have direct access to environmental objects and events or to their causal relation-
ship (the ‘generative model’ producing environmental signals). Instead, our biological sensors
process only a limited set of available inputs. These are stochastic and may be ambiguous.
Thus, in building internal models of the external environment, we must first ascribe observations
to their likely underlying environmental cause or causes. That is, wemust deduce the set of causal
relationships within a hypothesized generative model linking observations and hidden (or latent)
causes (Figure 1). For instance, an auditory and a visual cue may relate to a single object
(e.g., a heard and seen cab) or could indicate two separate ones (e.g., a seen cab and another
heard-yet-unseen cab; Figure 1A, see caption and Box 1 for mathematical formalism). Thus, to
Box 1. Mathematical formalism of causal inference

Let us take the example of inferring the location of an object (or objects) in the environment, given two cues: an auditory (a)
and visual (v) one. In probabilistic terms, to infer the causal structure given sensory observations, we apply Bayes’ rule:

p CjXa,XVð Þ ¼ p Xa,XV Cj Þp Cð Þð
p Xa,XVð Þ ½I�

where p Cð Þ is the prior probability of assuming that signals belong to either a single or multiple sources (i.e., cabs), and
p Xa,XVð Þ is chosen such that p C ¼ 1jXa,XVð Þ and p C ¼ 2jXa,XVð Þ sum to 1 (in this case, where the graphical model as-
sumes C ¼ 1 and C = 2 represent the totality of all possibilities; see Figure 1A in main text). p C ¼ 1ð Þ is typically referred to
as ‘p-common’, the prior probability of combining cues. Then, assuming a particular cost function (i.e., what type of error
we would like to minimize), we may estimate the visual source as a weighted sum of the estimates under different possible
causal structures:

bSv ¼ p C ¼ 1jXa,XVð ÞbSv,c¼1 þ 1 � p C ¼ 1jXa,XV Þð ÞbSv,c¼2

�
½II�

where bSv,c¼1 is the estimate, given we assume auditory and visual cues pertain to the same cab. The optimal (i.e., reliability-
weighted [50]) solution with Gaussian likelihoods is

bSv,c¼1 ¼
xv
σ2

v
þ xa

σ2
a
þ μv

σ2
p

1
σ2

v
þ 1

σ2
a
þ 1

σ2
p

½III�

bSv,c¼2 is the visual estimate independent of auditory signals

bSv,c¼2 ¼
xv
σ2

v
þ μv

σ2
p

1
σ2

v
þ 1

σ2
p

½IV�

The details specifying the rest of parameters (e.g., μv ,σ
2
p, σ

2
v , σ

2
a ) and analytical forms for the full equation are described

elsewhere [27] and depend on the generative model of the specific problem at hand (cf. Figure 2 in [28] for depiction of a
number of different generative models). It is important to note, however, that causal inference is the general operation of
weighting different worldviews according to their inferred probabilities. Namely, a critical step in this computation is
summing the different interpretations and the parameters within these interpretations (Equation II). A component
ingredient of causal inference is the optimal combination of cues (Equation III, [50]), provided that these were inferred to
relate to the same source.

Trends in Co
gnitive Sciences, July 2023, Vol. 27, No. 7 633

CellPress logo


Trends in Cognitive Sciences
behave adaptively, we first have to form a hypothesis specifying the probability associated with
potential world states. Then, these hypotheses are weighted according to their relative evidence
in generating a percept, taking into account all possible worlds. This is a process of marginali-
zation, where we remove a variable (in this case, the hypothesized world states) by summing
over all possible values this variable could take. (Note that this process of marginalization may
be implicit, such as in the use of mixture priors [29,30].) Importantly, this process of causal in-
ference is true not only in perception but also in cognition and action. For example, in reasoning,
we may attempt to deduce the causal structure between a set of factors (e.g., age, sex, contact
with a virus) and an outcome (e.g., disease), or, duringmotor behaviors, wemay attempt to classify
sensory input as consequences of our actions or as emanating from the external environment.

In perception, the telltale sign of causal inference is a stereotyped pattern of behavior wherein in-
dependent sourcesmay bias perception of one another when they are weakly (dis)similar, but not
when they are very distinct [27,28]. For example, when trying to localize a cab, if auditory and vi-
sual signals originate from vastly distinct locations, these ought to be treated independently and
thus not bias the localization of one another. However, if a visible cab and a honking-yet-unseen
cab are near one another, we may deduce an incorrect set of causal relationships (i.e., internal
model) in attributing both visual and auditory signals to a single cab. In this scenario, we would
misuse both auditory and visual cues to estimate the location of our (e.g., visual) source of inter-
est, yielding perceptual biases. This pattern of behavior, with (attractive) biases being expressed
exclusively when distinct cues have relatively similar features, has been observed across a wide
array of tasks, including but not limited to spatial localization [27,31–33], orientation judgments
[34], rate detection [35], speech intelligibility [36], weight [37] and body [38–40] perception,
motor learning [41], heading estimation [42], and spatial navigation [43].

The suggestion that causal inference is impaired in ASD was supported first by tangential evi-
dence and more recently by a larger-scale, multiexperiment approach combined with formal
model fitting. The early hints came from studies in binocular rivalry demonstrating that individuals
with ASD altered between ambiguous percepts at a slower rate than their neurotypical counter-
parts [44]. That is, the set of causal relationships hypothesized to link observed photons and their
underlying generative images is less flexible in individuals with ASD (see [45] for a related interpre-
tation of bistable perception based on circular inference). Also, there is a vast literature
demonstrating that individuals with ASD will claim that audiovisual cues were presented synchro-
nously at larger asynchronies than control subjects do ([46]; see [47] for a meta-analysis of 53 such
studies). Leveraging speech stimuli, researchers [48] applied a causal inference model [36] to si-
multaneous judgments from neurotypical controls and individuals with ASD. Findings suggested
that individuals with ASD had a greater a priori probability of combining audio and visual cues, re-
gardless of whether these signals ought or ought not to be integrated. This is typically referred to as
a heightened ‘p-common’ (i.e., an a priori probability of combining cues).

More recently, a large-scale study (five psychophysical studies including over 90 adolescents)
was conducted to directly test whether individuals with ASD showed impairments in causal infer-
ence [49]. The researchers measured (i) unisensory auditory and visual localization thresholds,
(ii) Bayes optimal cues combination not requiring the deduction of causal relationships [50], and
(iii) explicit causal inference as well as implicit causal inference across (iv) audiovisual and (v)
visual-visual pairings. That is, this study tested low-level sensory encoding, multisensory integra-
tion (i.e., optimal cue combination), and causal inference within a single cohort and stimulus set.
All data were used to create a single model fit per participant, which demonstrated no impairment
in sensory processing or cue combination in ASD but did show a larger (implicit) ‘p-common’ in
these individuals relative to their neurotypical counterparts. Namely, even at very large audiovisual
634 Trends in Cognitive Sciences, July 2023, Vol. 27, No. 7
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or visual-visual disparities (the former in spatial location, the latter in velocity of motion), individuals
with ASD behaved as if always (maladaptively) combining cues. Together, these results explain
why individuals with ASD have been widely reported to show anomalous multisensory behavior
[46,47,51]. It is not due to an impairment in the process of multisensory integration itself, which
is in line with statistical optimality [50] in both controls and individuals with ASD [49,52], but be-
cause of a more general anomaly in establishing and updating an internal model specifying
when cues ought or ought not to be combined. The observation that causal inference is impaired
in ASD but optimal cue combination [50] is not [49,52] provides an important clue to a potential
algorithmic deficit that may exist in ASD.

Algorithm: marginalization and divisive normalization
Bayesian cue combination [50] specifies how to combine signals in a statistically optimal manner,
provided that these belong to the same source (see Box 1). That is, it is a subcomponent of the
larger causal inference scheme. This process of cue combination is not impaired in ASD [49,52].
From the standpoint of mathematical operations, a major differentiator between cue combination
(intact in ASD) and causal inference (impaired in ASD) is the presence of marginalization in the latter
but not the former. Interestingly, theoretical work [53] showed that biologically plausible neural net-
works (e.g., those associated with constant Fano factors as in linear probabilistic population
codes [54]) perform marginalization via a neural computation known as divisive normalization
[55]. The implication is that causal inference may rely on divisive normalization, and thus this is a
neural operation that may have gone awry in ASD.

Divisive normalization is a critical operation allowing neurons to adapt their dynamic range ac-
cording to context and thus combat saturation. This is accomplished by computing a ratio be-
tween the response of an individual neuron and the summed activity of a pool of neurons (Figure
1B, [55,56]). Importantly, this form of gain control effectively modulates synaptic weights and is
considered a canonical neural computation [56] in that it has been described across primary [55]
and extrastriate [57] visual cortex, auditory cortex [58], the superior colliculus [59], and the antenna
lobe of fruit flies [60], among others. It is thought to be involved in contrast- and pattern-invariant
visual representations [56,61], as well as in concentration-invariant odorant encoding in the olfac-
tory system [60]. Namely, just as causal inference is a canonical behavioral computation, divisive
normalization is a canonical neural computation.

In line with the argument that marginalization through divisive normalization may have gone awry
in ASD, in silico simulations [62] showed that alterations in divisive normalization could account for
diverse phenomena present in the condition, such as alterations in visuospatial suppression
[63,64] or greater tunnel vision by surround suppression [65,66] (see [21] and [67], respectively,
for a classic and recent review on sensory perception in ASD, including the highlighting of numer-
ous conflicting results). This modeling work [62] argued that differences in divisive normalization
could also putatively account for enhanced local (vs. global [68]) and simple (vs. complex [69])
processing in ASD, as well as for deficits in social cognition [70], altered visual search [71], and
increased variance [72,73] and size of receptive fields [74] in ASD. However, subsequent reports ex-
amining cross-orientation suppression [75] and adaptation to gaze direction [76], processes thought
to rely on divisive normalization, showed no difference between controls and individuals with ASD.

To summarize, divisive normalization is a canonical neural computation [54] that may subserve
causal inference ([53]; see also [77,78]) and accounts for a variety of the peculiarities present in
ASD [62], but not all [75,76]. The likely resolution to the latter observation is that ‘vanilla’ divisive
normalization models are imperfect. Fittingly, recent work [79] examined whether a standard di-
visive normalization model could account for neural responses in V1 as macaques viewed natural
Trends in Cognitive Sciences, July 2023, Vol. 27, No. 7 635
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images (as opposed to the better-studied yet less ecologically relevant Gabors). The authors
reported that variability in V1 spiking activity was not well explained by existing descriptions of sur-
round suppression through divisive normalization. Instead, they were better predicted by a model
wherein divisive normalization was gated by a probabilistic inference regarding the homogeneity
of images. In short, according to this model [79], divisive normalization should be or is only applied
when neurons and their normalization pools encode a single object. Put differently, in the aug-
mented divisive normalization model [79], causal inference gates divisive normalization (see [75]
for an earlier account arguing that this augmented divisive normalizationmodel may better explain
disparities between ASD and neurotypical perception than the standard model [62]).

Neural instantiation: excitatory-to-inhibitory ratio balance
So far, we have argued that anomalies in perception-driven behavior in ASD may emanate from
abnormalities in causal inference [48,49] and that this computation is subserved algorithmically by
a process of marginalization. Furthermore, we have suggested that marginalization relies on divi-
sive normalization [53,55,56]. Consistent with this, we have seen that idiosyncrasies in divisive
normalization may partially account for phenotypes observed in ASD [62] and that authors
have argued for a strong relationship between divisive normalization and causal inference (either
the latter being subserved by the former [53,77,78] or the latter gating the former [79]). In this sec-
tion, we briefly discuss neural instantiation.

There is a strong and previously discussed (e.g., [62]) relationship between divisive normalization
and the well-known hypothesis that ASD symptomatology arises from a heightened excitatory-
to-inhibitory ratio (E/I balance, [80]). This hypothesis explains the frequent comorbidity between
autism and seizures [81] and has been supported by observations indicating increased glutamater-
gic and decreased GABAergic activity, as well as a decrease in the number of γ-aminobutyric acid
(GABA) receptors [82] in ASD. Similarly, many of the genes associated with ASD – and, as a con-
sequence, many of the developed mouse models of the disorder [83,84] – relate to glutamate or
GABA signaling. Studies leveraging magnetic resonance spectroscopy have also indicated
disruptions in GABA concentration in visual [85], auditory [85], and somatosensory [86] cortices
of humans with ASD. In fact, GABA concentrations seemingly correlate with ASD symptomatology
severity [87], even though there is not always a categorical difference in GABA concentration
between neurotypical and atypical groups [87], putatively due to homeostatic compensatory
mechanisms [84].

Relating back to divisive normalization, one could, of course, conjecture that alterations in the ge-
netic and neurochemical makeup of the brains of individuals with ASDmay impact the machinery
necessary for divisive normalization. The inverse relationship may also be true, with the inability for
gain modulation through divisive normalization leading to, for example, increased seizures [81]
and alterations in the amplitude of neural responses [73] and the size of receptive fields [74].
We are agnostic regarding whether molecular (e.g., availability of GABA) or circuit-level
(e.g., gain modulation via divisive normalization) mechanisms are ‘primary’ in ASD, with the con-
dition potentially being expressed due to several different biological root causes (i.e., an
equifinal entity). Instead, we aim to highlight that a computational deficit in causal inference
[27,28,48,49] – which implies (nonlinear) inference over putative generative structures in addi-
tion to (linear) combination of Bayesian likelihoods and priors within a given structure – naturally
suggests impairments in divisive normalization [62] and E/I balance [72].

Multilevel models: predictive coding and circular inference
The framework we have described has the advantage of neatly dissociating between computa-
tional, algorithmic, and biological levels of analysis. As such, it may be useful in making predictions
636 Trends in Cognitive Sciences, July 2023, Vol. 27, No. 7
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at each level of analysis (e.g., computational prediction of the current account: no deficit in ASD in
combining priors and likelihoods within static generative structures, but in adaptively updating in-
ferred generative structures [88]; biological prediction: changing interpretations of a given sensory
milieu should be accompanied by changing functional connectivity within normalization pools,
and maladaptively in ASD). However, the distinction between levels of analysis may be more use-
ful to researchers than a reality of brain function (e.g., there is no computational level in the brain).
In turn, it is important to highlight largely compatible models that apply across levels of descrip-
tion, such as predictive coding [89] and notions of circular inference [90] (see Box 2 for further
comparison between our account and predictive coding theories of ASD).

ASD has been described as a disorder of prediction [15,16,91], and, just as causal inference and
divisive normalizationmay, respectively, be canonical computations at a behavioral and algorithmic
level, predictive coding has been described as a basic computational and neural motif [92]. In short,
in predictive coding, perception is asmuch ‘top-down’ as it is ‘bottom-up’. Instead of neural codes
becoming increasingly complex as one ascends the neural hierarchy (i.e., a representational frame-
work), in predictive coding, neural nodes compare their inputs to their expectations as inherited
from ‘top-down’ signals. Then, the differences between these, the prediction errors, are sent
downstream and become the input to the next node in the neuraxis. Within this framework, the in-
hibition of neural responses that occurs as stimuli extend into surround fields ([93], algorithmically
explained by divisive normalization [62] and anomalous in ASD [63]) is the consequence of stimuli
at a given location acting as a prediction for stimuli in neighboring regions [92]. Thus, within this
framework, differences in surround suppression in ASD [63] are due to deficits in making adaptive
predictions.

To instantiate the framework of predictive coding, neural networks necessitate a microcircuit to
maintain an internal model giving rise to predictions, as well as a comparator microcircuit comput-
ing the prediction error between bottom-up inputs and top-down predictions. In cortical nodes
where neurons do not have high intrinsic firing rates (in contrast to subcortical areas), neurons
Box 2. Bayesian brain hypotheses of ASD

The initial ‘Bayesian brain’ account of ASD stated that individuals with the condition underused their expectations or Bayesian
priors [14]. This account has been challenged by empirical work (e.g., [17,52,100]; see [88] for a review) but did lead to amore
subtle formulation: that individuals with ASD have ‘high, inflexible precision of prediction errors (HIPPEA)’ [15]. This latter
account has received support [16,101] but has also made predictions that have not been borne out in empirical findings.
For instance, a biological implementation of HIPPEA would involve the inappropriate cancellation of prediction errors leading
to circular inference [90,99] wherein bottom-up signals reverberate and are misinterpreted as predictions. A recent study
[102], however, did not find increased circular inference in ASD (although this work awaits replication due to a limited range
in ASD or ASD-like phenotypes and the fact that it was not conducted in a controlled environment). Similarly, HIPPEA [15]
states that ‘optimal [multisensory] integration will not take place, because all cues, even redundant or very uncertain ones,
will be weighed equally’. This prediction has been falsified across visual-vestibular [52], audiovisual [49], and visual-visual
[49] pairings, where individuals with ASD combine cues in a statistically optimal manner, akin to their neurotypical
counterparts. This is true even when cue reliability changes on a trial-by-trial basis [49] and thus demands appropriate
reliability-based weighting.

We consider the causal inference account proposed here to be an evolution of rather than a departure from HIPPEA [15].
Indeed, these models have more in common than they have in difference (see, e.g., [103]). As HIPPEA, we consider the
defining characteristic of ASD pathology to be the inability to flexibly adjust to context. However, we consider this to be
true only when the adjustment of inferred causal structures (‘what observation relates to what latent cause’) is needed. This
is seemingly congruent with the observation that updating of contextual (i.e., experiment-specific) but not structural
(i.e., true in the external world) priors is impaired in ASD [88]. In particular, the causal inference account would not predict
a heightened weight of prediction errors, as during bottom-up circular inference [102], or impaired optimal cue combination.

It is true that two studies fitting formal causal inferencemodels to ASD data [48,49] demonstrated a heightened ‘p-common’.
However, we consider a heightened ‘p-common’ not as the defining characteristic, but simply as the inflexible adjustment of
inferred causal structures, as demonstrated by studies in binocular rivalry [44,104–109].
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Outstanding questions
Would individuals with ASD show anom-
alies in causal inference within naturalistic
contexts? Causal inference has been
well studied in laboratory tasks requiring
binary choices and discretizing action
and perception. However, we do not
know how this translates to more natural
contexts with continuous time and active
sensing.

How is causal inference computed by
neurons and neural ensembles? There
seems to be a strong association
between causal inference and divisive
normalization, but the exact
relationship is unknown. The
relationship currently rests on the
observation that algorithmically causal
inference necessitates marginalization,
which can be implemented via divisive
normalization.

Can ‘augmented’ divisive normalization
models account for recent empirical
observations within the cognitive
neuroscience study of ASD? How
does divisive normalization relate to
hypo- and hypersensitivity to sensory
stimuli (see Box 3)?

What animal models and what
behavioral protocols would be most
effective in querying predictive coding
in ASD from a systems neuroscience
perspective? Dissection of the neural
circuit supporting predictive coding is
occurring at the level of systems neuro-
science, whereas theories of predictive
coding in ASD exist at the levels of psy-
chology and cognitive neuroscience.

Can we assume that cost functions are
similar across individuals with ASD and
their neurotypical counterparts? Most
reports fitting Bayesian models to the
study of ASD assume a given cost
function (e.g., maximizing reward
rate), but these are subjective and diffi-
cult to establish. For instance, the sub-
jective cost associated with performing
actions may be different across ASD
and neurotypical individuals.

Would manipulations of E/I balance
and divisive normalization selectively
impair causal inference without
impairing optimal cue combination?
may be able to signal the presence of an unexpected input via an increase in firing rate, but they
would not be able to signal the absence of an expected input (putatively requiring a decrease in fir-
ing rate). Thus, it is likely that two types of prediction error neurons exist [92], either increasing their
firing according to a difference between input and prediction (type 1; input − prediction) or the dif-
ference between prediction and input (type 2; prediction − input). This could be accomplished by a
circuit akin to that depicted in Figure 1C, which emphasizes the critical need for inhibitory interneu-
rons (i.e., E/I balance). This critical need is similarly emphasized in quantitative simulations [90] dem-
onstrating that the absence of proper inhibitory loops subtracting predictions and prediction errors
results in pathological circular belief propagation wherein predictions (priors) or prediction errors
(likelihoods) reverberate throughout the circuit and end up exerting undue influence (i.e., as in the
heightened precision account of ASD [15,93]; see Box 2 for further discussion contrasting causal
inference and the heightened precision of prediction errors accounts of ASD).

A second critical element of the predictive coding circuitry ought to be a gating ormodulatory signal
([16,92,94], Figure 1C), given that not all errors (or surprises) are created equally. Some should be
expected, given contextual cues (as when stimuli are noisy), whereas others should not. Only ‘un-
expected uncertainty’ should result in a changed internal model, because these likely reflect a
change in the external environment [95,96]. Just as dopaminergic signals are thought to adjust
learning rates in reward prediction errors [97], some [16,94] have suggested that neuromodulators
(particularly acetylcholine and norepinephrine) fine-tune the precision, and thus weight, attributed
to predictions and prediction errors. It is precisely this context-dependent modulation that is hy-
pothesized to be aberrant in ASD [15,16,93] and which potentially leads to the slow updating of
internal models, including their associated expectations, or priors [16,18,19,98]. Here, we specu-
late that divisive normalization may be a circuit-level mechanism to regulate the precision of predic-
tion errors and that this mechanism may be selectively involved in computations leading to an
inference over generative structure(s), or structure learning [79]. Nonetheless, broadly, our account
based on causal inference is largely compatible with the inflexible precision of prediction errors ac-
count [15,16,93] (see Box 2), which may render the process of structure learning an optimization
rather than an inference problem. In our opinion, however, the current account more naturally
links to existent theories based on divisive normalization [62] and E/I balance [80].

Concluding remarks
In summary, we have sketched a roadmap from behavior and causal inference to marginalization,
divisive normalization, and E/I imbalance. We also discussed predictive coding and its similarities
and dissimilarities with the current account (see Box 2). Prior work has suggested that individuals
with ASD show impairments in each of these elements (causal inference [48,49], divisive normal-
ization [56,62], predictive coding [15,16], context-dependent uncertainty partitioning [16,95], and
E/I balance [80]). Similarly, prior work has made the association between some of these elements
(see [15,62,75,90]). Our contribution here is in highlighting the relationship between each of these
individual elements and in arguing that these may not be different theories or accounts of the dis-
order, but all part of a unified one bridging across levels of description. Furthermore, unlike prior
work, we emphasize deficits in the flexible updating of inferred generative structures – the pro-
cess of causal inference [27,28,48,49] – as key in ASD pathology. In our opinion, this view
most naturally relates to impairments in marginalization, divisive normalization, and E/I imbal-
ances. But it is certainly not incompatible or contradictory with previous predictive coding [15]
and circular inference [90,99] accounts of ASD and psychopathology more generally. Of course,
much work remains to be done (see Outstanding questions) from both basic science and clinical
perspectives (see Box 3 for speculation on how our framework may relate to ASD symptomatol-
ogy). Although direct evidence for certain aspects of our proposal is limited at present, the
strength of the current framework is that it naturally ties in previous, more established accounts
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Box 3. Relationship to ASD symptomatology

ASD is clinically characterized by sociocommunicative impairments, restrictive and repetitive behaviors, and perceptual
anomalies including hyper- and hyposensitivity to sensory stimulation [1]. How does an account based on links between
causal inference, marginalization, divisive normalization, and E/I balance relate to this symptomatology?

We can only speculate, given that few studies have formally tested causal inference within an ASD population, and none has
meticulously characterized the symptomatology of the tested cohort. Given this caveat, we consider the key behavioral deficit
in ASD to be the inability to update internal models linking observations to hidden causes – for example, flexibly deciding
whether multisensory cues relate to the same objects and thus ought to be integrated or not. This includes the inflexible
updating of expectations [15,18,19]. Accordingly, anomalies in perception are due to a mismatch between the true and
inferred generative structures yielding sensory signals. Hyper- and hyposensitivity may also emanate from deficits in
contextualization, where a given stimulus may appear disproportionality intense/dull, depending on context. In this line, some
[67] have recently argued that disturbances in divisive normalization and E/I balance may explain the striking finding that
perception in ASD does not adhere to Weber’s law [110] (i.e., is not properly contextualized).

Repetitive behaviors, insistence on sameness, and stereotypy could result from attempts to align incoming sensory evidence
with the inflexible expectations of what that sensory input ought to be. In fact, recent work demonstrates that individuals with
ASD will take overt compensatory measures [49] when faced with ambiguous generative structures.

As others have before us (e.g., [15,21]), we consider that sociocommunicative impairments may be scaffolded on perceptual
deficits and/or be particularly complex scenarios where latent structures are intricate and continuously changing, thus readily
highlighting the computational deficits present in ASD.

Trends in Cognitive Sciences
(particularly the association between causal inference and divisive normalization). We hope this
big-picture perspective will help design future theory-motivated experiments and ultimately im-
pact positively the lives of those with ASD.
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